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ABSTRACT 
 

Predictive models based on near infra-red spectroscopy for the assessment of 

fruit internal quality attributes must exhibit a degree of robustness across the 

parameters of variety, district and time to be of practical use in fruit grading.  At the 

time this thesis was initiated, while there were a number of published reports on the 

development of near infra-red based calibration models for the assessment of internal 

quality attributes of intact fruit, there were no reports of the reliability (“robustness”) 

of such models across time, cultivars or growing regions.  As existing published 

reports varied in instrumentation employed, a re-analysis of existing data was not 

possible.   

An instrument platform, based on partial transmittance optics, a halogen light 

source and a (Zeiss MMS1) detector operating in the short wavelength near infra-red 

region was developed for use in the assessment of intact fruit.  This platform was used 

to assess populations of macadamia kernels, melons and mandarin fruit for total 

soluble solids, dry matter and oil concentration.  Calibration procedures were 

optimised and robustness assessed across growing areas, time of harvest, season and 

variety.  In general, global modified partial least squares regression (MPLS) 

calibration models based on derivatised absorbance data were better than either 

multiple linear regression or ‘local’ MPLS models in the prediction of independent 

validation populations.  Robustness was most affected by growing season, relative to 

the growing district or variety.  Various calibration updating procedures were 

evaluated in terms of calibration robustness.  Random selection of samples from the 

validation population for addition to the calibration population was equivalent to or 

better than other methods of sample addition (methods based on the Mahalanobis 
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distance of samples from either the centroid of the population or neighbourhood 

samples).  In these exercises the global Mahalanobis distance (GH) was calculated 

using the scores and loadings from the calibration population on the independent 

validation population.  In practice, it is recommended that model predictive 

performance be monitored in terms of predicted sample GH, with model updating 

using as few as 10 samples from the new population undertaken when the average GH 

value exceeds 1.0. 
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 1

1 
THEORY AND LITERATURE 
REVIEW 

INTRODUCTION  

Prediction models for the assessment of fruit internal quality attributes based on 

near infra-red (Yermiyahu et al. 1997) spectra must exhibit a degree of robustness to 

be of practical use in fruit grading.  Robustness may be defined as the ability of the 

calibration equation to endure and predict with acceptable accuracy across the 

parameters of variety, district and time, for the attribute of interest.  The calibration 

model, built at past or current time, should allow valid predictions for future 

spectroscopic measurements (Thomas and Ge 2000).  To achieve this aim, the 

population used to derive the calibration equation must have sufficient variability 

within the population to best represent all subsequent samples presented to the 

instrument.  However, inclusion of ever increasing sample variability within the 

calibration population will, at some point, lead to a loss of accuracy.  At this point, the 

development of a second model is warranted.   

The Problem 

de Noord (1994) states that there are a number of situations in which a 

multivariate calibration model may become invalid.  Such instances include 

replacement of an instrument, drift in the instrument response, measurement at a 
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different temperature, or change in the physical or chemical composition of the 

samples.  These situations involve change in the sample (e.g. band assignment, light 

scattering and light absorbing characteristics) or changes in the instrument 

(e.g. wavelength accuracy, photometric accuracy or optical configuration).  These 

changes will set the new samples being scanned spectrally apart from the ‘normal’ 

calibration population.  At some point these changes will be sufficient to adversely 

affect the prediction accuracy of the attribute being assessed by near infra-red 

spectroscopy (NIRS).   

Photometric accuracy of a given spectrometer will be influenced by: (a) the 

signal to noise (S/N) of the detector and associated electronics, (b) the efficiency of 

the detectors, and (c) the efficiency of the dispersion grating in its ability to disperse 

the reflected or transmitted light with minimal loss of signal to the detectors.  If these 

changes are not wavelength dependent, the derivatisation of the spectral data should 

minimise their effect on the calibration model’s prediction accuracy.   

Where these changes are wavelength dependent, a prediction bias will result.  

The wavelength accuracy of a given spectrometer is commonly affected by 

mechanical malalignment.  In scanning and filter instruments (not linear array 

instruments), wear in moving parts such as scanning dispersion gratings and filter 

wheels will affect the instrument wavelength repeatability and efficiency.  In diode 

array instruments, any shift in the optical bench (e.g. thermal expansion of 

components) will affect wavelength accuracy.   

The complex matrix making up the high moisture biological sample (i.e. intact 

respiring fruit containing simple and complex carbohydrates, lipids, protein and 

greater than 80% water), can change in both physical and chemical composition, 

resulting in changes in the spectral characteristics in both the visible and near infra-
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red (NIR) parts of the spectrum.  Such changes can be used to advantage.  For 

example, Kim et al. (2000) used pattern recognition models to classify kiwifruit 

according to various pre-harvest fruit management treatments, based on short 

wavelength near infra-red (SW-NIR) spectra.  However, if the calibration model is 

developed using a linear multiple variate regression (e.g. partial least squares (PLS) or 

MLR, (with coefficients for each wavelength), any change in the matrix causing a 

wavelength shift in band assignments will degrade the prediction capacity of the 

model.   

Data pre-treatment 

Absorbance of reflectance spectra can be influenced by changes in the sample that 

are not related to the component of interest.  For example, scattering of light from the 

sample surface (specular radiation) can cause a baseline shift, with more effect at longer 

wavelengths than shorter wavelengths (for this reason the sky looks blue).  Pre-treatment 

of spectral data prior to analysis is undertaken to remove or reduce undesirable variations 

such as baseline tilt or light scattering within the sample.  In diffuse reflectance NIR 

measurements, significant difference in the spectra may occur due to the non-

homogenous distribution of the particles making up the sample.  The degree of scattering 

is not uniform throughout the spectrum being greater at the longer wavelengths and the 

effect of scattering on a spectrum is apparent as a baseline shift, tilt and sometimes 

curvature (more so at wavelengths greater than 1,100 nm).  Pre-processing techniques to 

address this problem includes multiplicative scatter correction (MSC), standard normal 

variance (SNV), detrending (DT) and derivatives.   
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Multiplicative scatter correction  

This technique assumes the wavelength dependency of the light scattering from 

and within the sample is different from the absorption by the sample, due to the 

constituent of interest.  Multiplicative scatter correction (MSC) involves calculation of a 

linear regression of the spectral responses in each spectrum against the average spectrum 

of the population.  The mean offset value is then subtracted from the mean spectra, and 

the result divided by the slope to give the MSC corrected spectrum.  Barnes et al. (1989) 

recommends that MSC is only applicable to spectra with a fairly linear response to 

concentration of the analyte of interest.  If the spectra in the calibration population are 

substantially different from one another due to a wide range of variability in the sample 

composition, MSC correction will not give the desired result.   

  Mean Spectrum:   ∑
=

=
n

i
jiAA

1
,  

  Linear Regression:   iii bAmA +=  

  MSC Correction:   ( )
( )

i

ii
MSCi m

bAA −
=  

Where A is the n by p matrix of the calibration population spectral responses for 

all wavelengths, Ā is a 1 by p vector of the average responses of all the training 

population spectra at each wavelength, Ai is a 1 by p vector of the responses for a single 

spectrum in the training population, n is the number of training spectra, and p is the 

number of wavelengths in the spectra.  The mI and bI values are the slope and offset 

coefficients of the linear regression of the mean spectrum vector Ā versus the Aj 

spectrum vector.  
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Standard normal variance and Detrending 

Standard normal variance and DT are 2 other techniques used to reduce the effect 

of light scattering on the sample spectrum.  Standard normal variance removes scattering 

by normalising each spectrum in the calibration population by the standard deviation of 

the absorbances across the entire spectral range of that spectrum.   

Mean Response  ∑
=

=
p

j
jiAa

1
,  

SNV Correction  ( )
( )
( )
( )1

1

2

,

−

−

−
=

∑
=

p

aA

aAA
p

j
iji

ii
SNVi  

Where A is the n by p matrix of training population spectral responses for all the 

wavelengths, Ai is a 1 by p vector of the responses for a single spectrum in the training 

population, ia  is the average of all the spectral responses in the vector, n is the number of 

training spectra, and p is the number of wavelengths in the spectra. 

With DT, each spectrum is treated independently of the other spectra in the 

calibration population.  In the calculation, a linear least squares regression is used to fit a 

quadratic polynomial to the responses in the spectrum (Barnes et al. 1989).  Then this 

curve is subtracted from a given spectrum.  This quadratic curvature component of the 

calculation is an attempt to correct the effects of particle size and packing of the sample.   

Barnes et al. (1989) found that SNV and DT correction of spectra of crystalline 

sucrose samples achieved superior calibration statistics to those obtained with straight 

absorbance (log 1/R) and results equal to or better than derivatised (first or second) 

transformations.  Further, derivatisation of SNV and / or DT spectra produced better 

calibration results than derivatised only spectra, but not significantly better than straight 

SNV and /or DT transformations.   
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Generally, SNV is applied first to correct for the effects of interference of scatter 

and particle size, similar to MSC.  Then DT is used to attempt to remove the additional 

variations in baseline shift and curve-linearity. 

Derivatives 

The first derivative is simply a measure of the slope of the spectrum for each point 

in the spectrum, and is 1 of the best methods for removing the baseline shift (Barnes et 

al. 1989).  The second derivative (rate of change of the slope of the spectrum), as well as 

removing any offset is not affected by any linear tilt in the data.  Most applications of 

NIR spectroscopy, utilising either diffuse reflectance or transmission modes on intact 

fruit, use second derivative absorbance data in calibration development (e.g. Guthrie and 

Walsh (1997b), Kawano et al. (1993), Kawano et al. (1989), Peiris et al. (1998b), 

Slaughter et al. (1996), Lammertyn et al. (1998)).  Different chemometric software 

packages offer different methods of derivative calculation.  The software package 

WINISI offers a ‘Norris’ method of derivative calculation whereas The Unscrambler 

offers both ‘Norris’ and ‘Savitzky-Golay’ methods of derivative calculation.   

In the ‘Savitzky-Golay’ method, data points around a central point are fitted to a 

polynomial function.  A least squares curve fitting routine is combined with 

differentiation to assess the derivative (or second derivative) at the wavelength (λ).   

For slowly changing functions, derivatives can be approximated by taking the 

difference in y (absorbance) values between non-adjacent data points.  To reduce noise, 

the difference of the 2 averages can be taken, formed from points surrounding the 

selected y values.  To further reduce computations, division by ∆x can be omitted.  

Norris (1982) defined the term “segment” to indicate the length of the x interval over 

which the y values are averaged, and the term “gap” for the length of the x interval that 
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separates the 2 segments to be averaged.  This protocol, known as a ‘Norris’ derivative, 

is adopted in the WINISI software.   

Using the ‘Norris’ derivative protocol, second derivative of 3 data points at x 

values (a; b; and c) can be calculated as a – 2b – c.  Using WINISI terminology, a 

2:10:6:1 data treatment is computed as (1 + 2 + 3 + 4 + 5 + 6) – 2 * (11 + 12 + 13 + 

14 + 15 + 16) + (21 + 22 + 23 + 24 + 25 + 26), where the number in parentheses 

refers to the absorbance data at that data point number.  The range of data points 

involved in each treatment is n data = 2 * 10 + 6 + 1 – 1 = 26.  The data point 

associated with this treated value is (n data + 1)/2 = (26 +1)/2 = 13 (any fractional 

data point is truncated) (pers. com. Mark Westerhaus 1999).  The gap size (number of 

data points either side of the data point of interest) used in the derivative calculation, 

will affect the extent of smoothing of data, and will vary with the instrument used.  

The setting of the gap is generally optimised by trial and error.  Inherently, it is 

expected that the gap should be ≥ to the λ resolution of the instrument.  For example, 

the Foss NIRSystems 6500 records data at 2 nm steps, but has a wavelength 

resolution of (full width at half maximum height, FWHM) of 10 nm.  Shenk et al. 

(1992) typically recommends a gap of 4 data points for calculation of derivative shifts 

for this data, entailing averaging over 8 and 16 nm for first and second derivative, 

respectively.   

Measurement of Calibration Model Performance 

The success of a calibration model in terms of calibration and prediction indices 

can be judged through the use of the following: the coefficient of determination (R2), 

root mean square standard error of calibration (RMSEC), the root mean square 

standard error of prediction (RMSEP), root mean square standard error of cross 
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validation (RMSECV), variance ratio (1-VR), bias (the difference between the mean 

of actual and predicted values) and the ratio of the standard deviation of the 

population divided by the root mean square standard error of prediction or the root 

mean square standard error of cross validation (SDR) (Shenk et al. 1992) and 

(McGlone and Kawano 1998) (Table 1).  The term ratio performance deviation (RPD) 

is similar to SDR (except RPD uses a bias corrected RMSEP or RMSECV values).   

The key terms are SD and RMSECV for calibration results and SD, RMSEP 

and bias for prediction results.  The Rc
2 (calibration model coefficient of 

determination) is a function of SD and RMSEC, and Rv
2 (validation coefficient of 

determination) is a function of SD and RMSEP (when bias = 0).  Obviously the R2 

can be improved by increasing the SD of the population.  Evaluation of a model using 

the R2 statistic should therefore only be considered with knowledge of the SD (which 

should be equivalent to that of the populations to be predicted).   
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Table 1. Definition of chemometric terms.  
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McGlone and Kawano (1998) ‘rule of thumb’ for evaluation of a model 

considered that a SDR of at least 3.0 (defined with RMSEP) was necessary to grade 

fruit into 2 classes with an acceptable degree of accuracy.  However, this requirement 

is dependent on the required accuracy of the grading exercise.  Certainly, the SDR 

must exceed 1, otherwise the grading is meaningless.   

In the development of a calibration model, the data treatments chosen should 

minimise the standard error of calibration (RMSEC).  An “acceptable” RMSEC is 

defined as usually from 1 to 2 times the laboratory error (Hruschka 1987).  Where cross 

validation is used, the standard error of cross validation (RMSECV) should be no more 

than 20% greater than the RMSEC (Shenk et al. 1992).  Overfitting occurs when a 

calibration regression approximates non-representative features of the particular samples 

used for calibration.  Evidence of overfitting can be found where (Hruschka 1987):  

(i) The RMSEC is much lower than the laboratory error.  This case usually resulting 

from too many terms in the regression or too few samples.   

(ii) The bias is significant compared with the standard deviation of validation 

differences, also known as RMSEP(C).  The value refers to the SD of the 

variance between the NIR measured and reference values of the samples.  The 

contribution by bias to variance can be explained by the fraction of bias2 / 

RMSEP(C)2.  For example, if the RMSEP(C) = 1.0, then a bias of 0.40 

contributes only 16% of the variance, but a bias of 0.80 will contribute 64% of 

the variance and is significant compared to the RMSEP(C).   

(iii) The bias is negligible, but the RMSEP(C) is more than twice the RMSEC.  If this 

case is due to instrumentation issues, rather than the sample matrix, it may be 

possible to obtain a good NIR measurement from a bad calibration by averaging 
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the results of several NIR measurements on sub-samples (averaging out sampling 

error).   

Over-fitting of the calibration model to the spectral data and the attribute of 

interest, may occur within a particular population by the fitting of ‘noise’ (i.e. to 

spectral information that does not either directly or indirectly relate spectroscopically 

to the attribute of interest).  The ‘rule of thumb’ recommended by Shenk et al. (1992) 

was to use approximately 1 wavelength in a multiple linear regression (MLR) model 

and 1 principal component (PC) in a partial least squares (PLS) model per 10 samples 

used in the calibration population.  Hruschka (1987) suggested the use of a minimum 

of 5 - 15 samples for each regression variable, data treatment constant, or any parameter 

of the data treatment (such as wavelength) that is allowed to vary.  The number of PC’s 

in a PLS model is generally determined by the minimum root mean square error of cross 

validation ((Shenk and Westerhaus 1993), (Slaughter et al. 1996)), but for large 

populations (e.g. 2000 samples), the chemometric software package normally sets a 

default of 16 to 25 PC’s (e.g. WINISI ver. 1.04a in MPLS has a default of 16 PC’s).   

Population structuring 

Building in variation  

In order for calibration populations to best predict on unknown samples, the 

population must be made up of samples covering all aspects of both spectral and wet 

chemistry data.  Therefore procedures are used to structure the calibration population 

and assess whether this calibration population is capable of predicting on any 

subsequent unknown population.   
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Structuring the reference values of the calibration population in a ‘boxcar’ 

distribution can be achieved by reducing the number of samples with reference values 

close to the mean.  For example, Guthrie and Walsh (1999) (Appendix A) report that a 

pineapple fruit total soluble solids model based on a boxcar distribution gave a higher 

Rc
2 than that based on normally distributed data, although prediction results were 

poorer.  Fearn (1992) considers that it is a mistake to discard samples if calibration 

sample numbers are limited.  If there is an ample supply of calibration samples and 

the constraint is reference analysis (e.g. cost of analysis), then flattening the 

distribution by selection is a “good idea” (Fearn 1992).  This procedure increases the 

standard deviation of the population but increases the emphasis of the regression on 

samples at the population’s extremities (improving prediction accuracy far from the 

mean) and removes spectral variance from the population.  The calibration population 

should also contain samples spectrally representative of the population being 

predicted (as discussed in the next section).   

Temperature Compensation  

Near infra-red calibration models developed on samples scanned at constant 

temperature are not reliable in predicting samples at different temperatures (Kawano 

et al. 1995 see also Guthrie and Walsh 1999, Appendix A).  For example, intact 

peaches (100 fruit each in calibration and validation populations, drawn from an 

original population of 200 fruit) were scanned at 3 different temperatures (21, 26 and 

31ºC) and spectra from all temperatures were included in the calibration population.  

Using this model to predict fruit at each of the 3 temperatures, RMSEP values ranged 

from 0.39 to 0.465 TSS with bias from 0.01 to 0.03% TSS, using a model developed 

on fruit at 1 temperature only, but without this temperature compensation, RMSEP 
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values ranged from 0.44 to 0.50% TSS, with bias from 0.05 to –0.33% TSS.  The 

‘repeatability’ file (REP file) of WINISI has been used to accommodate sample 

temperature change (Shenk and Westerhaus 1993).  The repeatability file contains 

spectral information about a source of variation that is to be minimised in the 

development of a calibration (e.g. variations due to sample temperatures or the use of 

different instruments).  In this method the spectra of 1 sample is collected at a range 

of sample temperatures.  The mean of these samples is then subtracted from each 

sample in the REP file and assigned a zero value to each constituent value before 

proceeding with the normal PLS procedure.  This structuring of the calibration 

population can be based on reference values (‘wet’ chemistry values), spectral data or 

a combination of both reference and spectral data.   

Outlier removal 

Multivariate distance measuring computations can be used to assess the 

presence of outliers in both the calibration and the prediction populations.  According 

to de Noord (1994) and Mark (1986), the Mahalanobis distance (D) is preferable to 

the Euclidean distance (ED) to measure the suitability of samples for inclusion in the 

calibration population because the D takes sample variability into account.  That is, D 

weights the differences by the range of variability in the direction of the sample point.  

The Euclidean distance treats all values equally when calculating the distance from 

the mean point.  Mahalanobis distances look not only at variations (variance) between 

the responses at the same wavelengths, but also at the inter-wavelength variations (co-

variance).   

In practice, using raw absorbance or derivative data for more than 10-15 

wavelengths can result in mis-classification of known samples (Mark and Tunnell 
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1985).  The above problem is mostly overcome by calculating D in principal 

component algorithm (PCA) or partial least squares (PLS) space (i.e. calculation of D 

from sample scores).  Measuring D in principal component or partial least squares 

space usually explains most of the sample variation within a population in less than 

fifteen PCA scores.  Scores are the values of factors (also known as principal 

components) calculated using either the PCA or PLS algorithms relating to each 

sample in the population (usually created from mean-centred absorbance data), and 

loading are either PCA or PLS factors relating to the wavelengths used.   

The Mahalanobis matrix equation is given as:- 

⎥⎦

⎤
⎢⎣

⎡
−
′

=
1n

SSM       eqn.1 

where M is a ƒ by ƒ Mahalanobis matrix, S is the n by ƒ matrix of training samples 

PCA/PLS scores, n is the number of samples and ƒ is the PCA/PLS scores (Mark and 

Tunnell 1985).  For mean centred score data (used by the chemometric software 

package WINISI ver. 1.04a) the above equation becomes: 
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Although it is better to use scores created from mean centred absorbance data, 

the equation 2 approach is a calculation simplification.  If mean centred absorbance 

data are used, then M from equation 2 should approximate M from equation 1 

(different by the residual description of the mean spectrum given by S ). 

Prediction of Mahalanobis distance for an unknown sample given in the 1*ƒ 

matrix, Sunk is given by  

( ) ( )′−−= − SSMSS unkunk
12D     eqn.3 

Thus, the D value will increase as more factors are used in the calibration 

model.  Further the average D value will vary between populations (Mark 1986).  For 
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example, adding outliers to a combined population will increase the D value.  Shenk 

et al. (1992) reported the use of a ‘standardized’ D value (this was not defined, but 

was presumably GH of eqn.5).   

Shenk et al. (1992) therefore recommend the use of a global Mahalanobis 

distance, where 
2

GH D
f=  referred to as Global H (GH) in WINISI ver. 1.04a for 

outlier determination.  

2

ƒ
DGH =  

( ) ( ) ( ) ( )
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i i

S S S S
GH S S S S

n

−
⎛ ⎞′− − ′⎜ ⎟= − −⎜ ⎟−⎜ ⎟
⎝ ⎠

 eqn.4 

A GH unit value is considered to represent a standard deviation from the group 

mean spectrum (centroid) and therefore samples with a GH of > 3.0 have a 0.01 or 

less probability of belonging to that group.   

However, additional extra factors to a model are not expected to linearly 

increase GH.  Thus standardization by the division of the number of factors, while 

computationally simple (Shenk et al. (1992) were working within the constraints of a 

640 Kb memory buffer) is not intuitively the best approach.  For example, further 

work might also consider division by the average score of the calibration population 

(eqn.5).   

The extent to which samples from the population are spread through 

multidimensional space can be calculated as: 

1

2

−
= ∑

n
D
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n      eqn.5 
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Shenk and Westerhaus (1991) also recommended the use of a neighbourhood 

Mahalanobis distance value (NH).  This value was used to estimate the proximity of 

each sample to every other sample in the population using Mahalanobis distances 

calculated as in equations. 2, 3 and 5.   

( )( ) ( )′−−′−= jiji SSSSSSNH 1    eqn.6 

This value can be used, together with spectral similarity (R2 of sample spectrum 

against mean spectrum of the calibration population) and GH (spectral distance from 

the mean spectrum of the population) to ascertain the ability of the calibration model 

to predict accurately on an unknown sample and to allow the removal of ‘superfluous’ 

spectra from the calibration population.  Shenk and Westerhaus (1991) recommended 

the use of a GH value of 3.0 and a NH value of 0.6 (for the Foss NIRSystems 6500 

scanning instrument) for elimination of outliers from a given population.  For 

instruments utilising less data points per spectrum (e.g. PDA or filter instruments), 

Shenk and Westerhaus (1993) recommended a lower NH value of 0.2.   

Another approach to sample outlier detection relies on the calculation of the 

difference between a spectra reconstructed from the scores and loadings, then the 

difference between the reconstructed sample and the original sample is the spectral 

residual.  By calculating the sums of squares of the spectral residuals across all 

wavelengths, an additional value can be generated for each spectrum (Galactic 

Corporation 1999).  Two methods can be used to include these spectral residuals in 

the matching of sample suitability for inclusion in the calibration population.  One 

combines the D and soft independent modelling of class analogy (SIMCA) test on the 

spectral residuals to test the validity of the samples matching to the calibration 

population.  The other combines the PCA/PLS scores and spectral residuals for each 
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spectrum and uses them all for the Mahalanobis group matrix calculations (Galactic 

Corporation 1999).   

The SIMCA method employs principal component analysis of full spectra for 

the construction of mathematical models for each material to be analysed, retaining an 

optimal number of PC’s (determined by a cross validation technique of optimal 

recognition and rejection rates in independently measured samples) for each 

(Gemperline et al. 1989).  The sum of squares of the residual spectrum (difference 

between the original and model constructed spectrum) is used to calculate a ‘F’ value.  

The probability level for the corresponding F value is used to classify the sample.   

( )

( ) ( )

2

2 1

q
p q

q
qo

S n
F

n fS
=

− −
    eqn.7 

where ( )2q
pS is the residual variance of spectrum p fit to population ( )2, q

oSq (where q is 

the calibration population) the variance within class q, qn is the number of spectra 

used in the training population for population q, M is the number of points per 

spectrum, and f is the number of PC’s used to model population q (Gemperline et al. 

1989).   

The local calibration technique, as patented by (Shenk and Westerhaus 1997), is 

based on a technique where the unknown spectrum is used to select a default number 

of similar spectra (e.g. 120 spectra) from a large database (up to 4,000 spectra).  A 

PLS regression equation is then developed on these selected spectra.  The developed 

calibration equation is then used to predict the unknown sample.  An increase in 

prediction accuracy for analysis of dried ground corn and haylage for dry matter, 

crude protein and acid detergent fibre of approximately 28% (in RMSEP values) is 

claimed, relative to specific global calibrations developed utilising PLS regression.  



 
   

18

CASE STUDIES OF CALIBRATION ROBUSTNESS 

Robustness across growing districts 

Robust models for prediction of the attributes of intact fruit will require the use 

of calibration populations that exhibit large variations in fruit origin, storage age and 

size, as well as large variation in the constituent being modelled (McGlone and 

Kawano 1998).  For example, McGlone and Kawano (1998) used 306 fruit of 1 

cultivar of kiwifruit sampled from 5 different orchards (both from New Zealand and 

Japan).  The calibration and validation populations were equal in size, and derived 

from randomised selection of the various data populations.  They found that a model 

(PLS regression on second derivative spectral data in the 800 to 1,100 nm region with 

20 nm segment smoothing) based on a combined calibration population gave “very 

good results” in predicting both Brix (% TSS) and DM, (Rc
2 of > 0.90, RMSEP values 

of < 0.5 units, bias of 0.04 and -0.01% TSS, respectively and SDR of 3.1 for both 

attributes).  However, this model was not tested on a subsequent separate population 

(e.g. next season’s fruit from the same districts).   

Peirs et al. (2003) investigated the robustness of PLS models for prediction of 

soluble solids in intact apples across orchards, seasons and cultivars.  The major 

variation in spectral data occurred between season (31%) and cultivar (17%) with 

orchard explaining only a small amount of the variation.  However, approximately 

39% of the spectral variability was due to “other kinds of compositional variability 

and noise”, not related to the season, cultivar and orchard.  Including more variability 

into the calibration populations improved validation accuracy as long as atypical data 

was not included, and the number of latent variables in the model development did not 
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exceed 9.  A number greater than 9 resulted in over-fitting and less subsequent 

robustness in terms of validation with external validation populations.  They 

recommend the inclusion of as much variability in terms of orchards and seasons as 

possible but the use of cultivar specific calibration models when possible.   

Robustness across different varieties / commodities 

While few studies have been published involving NIRS-PLS model robustness 

in prediction of fruit attributes across varieties, similar studies in relation to other 

commodities/attributes can offer insight into this issue.  Korcak et al. (1990) predicted 

leaf nitrogen (% N) using NIR spectroscopy of dried, ground fruit leaf tissue across 4 

different fruit tree species (apple, peach, plum and pear) sampled over time (May to 

August).  They found that models based on calibration populations (samples from 

year 1) composed of 1 species gave the best predictions for that species (prediction 

population samples taken the next year), with RMSEP values of 0.15% N or less.  A 

model based on a combined calibration population of all species (600 leaf samples) 

(SD not stated) predicted peach (RMSEP = 0.18) apple (RMSEP = 0.15), pear 

(RMSEP = 0.36) and plum (RMSEP = 0.46) leaf total nitrogen (% N) from samples 

obtained the following year.  The combined species model was recommended as 

suitable for peach and apple but less accurate for pear and plum estimation of leaf 

nitrogen.  Increasing the size of the calibration population over time may increase the 

usefulness of the method for plum and pear tissue N analysis.   

Kojima et al. (1994) used NIR spectroscopy to predict TSS of intact fruit for 

various stages of development of 2 cultivars (‘Kousui’ and ‘Housui’) of Japanese 

pear.  They used MLR (6 wavelengths in the spectral region between 1,500 and 

2,400 nm) and found the calibration statistics were improved by adapting a bias 
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correction or combining populations of 2 consecutive years.  The populations of each 

cultivar were split into calibration and validation populations in the proportion of 

approximately 60:40.  The combined populations were simply the addition of the 2 

years data.  The bias correction ranged from -0.01% TSS (RMSEP = 0.49% TSS) 

when 1 cultivar was predicted on its own prediction population, -0.53% TSS (RMSEP 

= 0.76% TSS) when used on the other cultivar’s prediction population, and –0.03 and 

–0.12% TSS (RMSEP = 0.58 and 0.83% TSS) when the combined calibration was 

predicted on the ‘Kousui’ and ‘Housui’ validation populations, respectively.  It is 

worth noting the high bias compared to the RMSEP when the calibration model 

developed with the cultivar ‘Housui’ was used to predict on the cultivar ‘Kousui’.   

Slaughter et al. (1996) reported soluble solids (SS) on intact tomatoes across 30 

different cultivars and 5 different locations on the fruit  - 4 around the equator and 1 at 

the blossom end.  Spectra were obtained from 400 fruit (100 fruit for calibration 

model development and 300 for validation) made up of 30 cultivars collected over 7 

weeks, at various stages of growth (maturity and ripeness) (proportion of each cultivar 

in the calibration and validation populations not stated).  Although the purpose of this 

study was to optimise the position on the fruit for taking optical data, they did show 

that an acceptable single calibration model (using the spectral region 800 - 1,000 nm) 

across many cultivars could be developed.  Validation results on the remaining 300 

fruit (proportion of each cultivar not stated) gave a Rv
2 of 0.79, RMSEP of 0.33% TSS 

with a bias of -0.05% TSS (SD of both calibration and validation populations not 

stated).   

Ventura et al. (1998) used NIRS to non-destructively measure Brix (% TSS) in 

2 cultivars of apple (Malus domestica Borkh., cv. ‘Golden Delicious’ and ‘Jonagold’).  

A spectrum per fruit was taken on the “sunny side”, and the population (total of 340 
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fruit) was split equally into calibration and validation populations.  They used MLR 

regression with up to 12 wavelengths covering the area of the spectrum from 811 - 

999 nm.  First derivative absorbance data gave better results than second derivative 

absorbance data (data not shown).  The best result on the combined calibration 

population (both cultivars) was achieved using 12 wavelengths (Rc
2 = 0.56, RMSEC = 

1.01% TSS (SD of 1.48% TSS), Rv
2 =  0.49, RMSEP = 1.14% TSS (SD of 1.45% 

TSS) with bias = -0.13% TSS.  When MLR was carried out separately on each 

cultivar, results were better for ‘Golden Delicious’ (Rc
2 = 0.65, RMSEC = 0.91% 

TSS, Rv
2 = 0.54, RMSEP = 1.10% TSS with bias = -0.25% TSS) than for ‘Jonagold’ 

data (Rc
2 = 0.52, RMSEC = 0.91% TSS, Rv

2 = 0.46, RMSEP = 1.18% TSS with 

bias = -0.08% TSS).  The individual cultivar calibrations were not tested on the other 

cultivar.  However, these results are poor compared to other published studies 

involving apples, a problem possibly attributable to the instrumentation (reflectance 

optics) used in this study. 

Robustness – time / season 

Change in growing conditions (within a season or between seasons) can effect 

both the chemistry (e.g. acid or sugar levels) and the physical structure (e.g. skin 

thickness, surface wax thickness).  Both issues can impact NIRS-PLS predictions, 

impacting the extent of overlapping bands, and the degree of incident light 

reflection/penetration, respectively.  In general then, models are not perfectly robust 

in the prediction of attributes for agricultural produce and industries employing this 

technique (e.g. protein content of wheat, oil content of rape seed) employ a procedure 

of validation on new samples, with model updating or model replacement as 

necessary. 
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Flinn and Murray (1987) used NIR reflectance spectroscopy to evaluate herbage 

quality in southern Australia.  The study involved 195 dried and ground hay pasture 

samples gathered over 3 years from various western Victorian farms and samples 

consisted of many different grasses with a mean legume content of 16%.  Calibrations 

were derived for estimation of crude protein (CP), neutral detergent fibre and in vitro 

dry matter, using MLR.  Ninety-five samples were used in calibration and 97 in cross-

validation.  In the case of CP (range of values from 5 to 20%), the MLR equation 

developed in year 1 predicted for year 2 and 3, (RMSEP = 0.71% CP, bias = 0.11% 

CP, RMSEP = 1.04% CP, bias = 0.37% CP, respectively).  No SD results were stated 

and all results were expressed as a percentage of dry matter.  According to Flinn and 

Murray (1987), most calibration equations derived for individual years were 

“sufficiently robust” to extrapolate to other years.   

Garcia-Ciudad et al. (1999) tested the robustness of a near infra-red reflectance 

spectroscopy (1,100 – 2,500 nm) calibration model developed with dried grass 

samples from 1 sampling year to predict the nitrogen content of samples from the 

same area but subsequent years.  The population (selected to represent all variables in 

the sample population) of grass samples was composed of heterogeneous and 

botanically complex samples.  These samples were gathered from different places, 

date of collection, soil type, growth stage and botanical composition in the 1 year 

(calibration population, SD of 4.0 g/Kg-1 N) and then used to predict nitrogen (N) 

content on samples gathered in that year and the next 3 years (validation populations, 

SD values of 6.1, 3.7 and 5.6 g/Kg-1 N, respectively).  These workers used a MLR 

regression program on derivatised absorbance values, utilising 6 wavelengths over the 

1,100 – 2,500 nm region of the spectrum.  The model (developed in year 1) was 

robust enough to accurately predict nitrogen concentration in samples of grass 
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collected in different years, with robustness defined as a RPD ( SDRPD=
RMSEP

) 

exceeding 3.0.  The RPD ranged from 3.46 to 6.04 in the prediction of nitrogen 

content in the validation populations.  Bias was lowest in the validation population 

taken from the same population as the original calibration population (0.13% N) and 

highest in the year 2 validation population (2.01% N) in an analyte range of 6.0 to 

38.7% N.   

Peiris et al. (1998b) used a NIR transmittance technique for the assessment of 

soluble solids in intact peaches (Prunus persica (L.) Batsch).  Calibrations to predict 

SS were developed using MLR regression on second derivative absorbance data with 

2 wavelengths (falling between 870 and 910 nm).  Selected samples from each of the 

individual cultivar (4 cultivars) calibration populations were combined to create both 

season (3 seasons) and cultivar calibrations populations to cover the entire range of SS 

contents within the season or cultivar.  They found the best predictions (higher 

correlation coefficients and lower RMSEP values) in 3 out of the 4 cultivars were 

obtained after using calibration populations to predict on validation populations 

(RMSEP values from 0.49% to 1.63% SS with bias values of 0.01% to –2.62% SS, 

respectively) tested for each cultivar, in each year but not between years.  The 

RMSEP values ranged from 0.90% to 1.41% SS with bias values from –0.01% to –

2.08% SS for a model developed using data of 3 seasons to predict on subsequent 

seasons.  They concluded that the cultivar or season calibration can be “successfully 

employed” to predict the SS content of fruit from different cultivars in different 

seasons.  In the individual cultivar and year predictions, calibration and validation 

populations were derived from the original population.   

Obviously the extent of model robustness across seasons will impact greatly on 

the practical application of this technology.  While the results of Peiris et al. (1998b) 
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are encouraging, further work is required to extend these observations across other 

commodities. 

Robustness – sample and equipment temperature 

The work of Sanchez et al. (2003) focused on the external factors of fruit 

temperature, spectrometer temperature and ambient light on their effect on lack of 

robustness of the NIR calibration model for sugar in intact apples.  They concluded 

that the sugar prediction was affected by both changes in the fruit and spectrometer 

temperature, but not by ambient light in their optical configuration (interactance 

probe).  The influence of spectrometer temperature was more than twice that of fruit 

temperature in terms of bias, while there was little effect on RMSEP(C) from change 

in either fruit or equipment temperature.  Several procedures were recommended by 

which spectra collected at different sample or equipment populations could be added 

to the calibration population to yield a model insensitive to these parameters. 

 

CALIBRATION TRANSFER BETWEEN INSTRUMENTS 

Multivariate calibration models are often intended for use over an extended 

period.  Models may be based on tens to even thousands of samples collected over 

time and covering the full range of expected sample spectral and attribute variability.  

Thus these calibration models require considerable effort and time in development.  

Obviously it is desirable to develop one model for use on multiple instruments.  

However, spectroscopic data will contain variation specific to a given instrument and 

measurement conditions (de Noord 1994).  Further, a predictive model developed and 
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used on one instrument may change or lose robustness because of instrument drift or 

shift (change in response by the instrument due to wear, replacement of vital parts 

etc.), change in the sampling or measuring environment (e.g. temperature), or a 

change in the sample physical or chemical constitution.   

Spectroscopic data will vary from instrument to instrument (scanning, filter and 

PDA instruments); over time on the 1 instrument (e.g. ageing of detectors energy 

quantum, replacement of vital parts); due to changes in measurement conditions 

(e.g. temperature) and changes in the chemical and physical composition of the 

sample (particle size or surface texture).  Standardisation procedures have been 

developed in an attempt to eliminate the need for full recalibration when changing 

instrumentation.   

Standardisation Strategies 

Standardisation between 2 different instruments from the same manufacturer, 

where the differences in spectral data are small, may be achieved by hardware 

matching (detector linearity, frequency accuracy, angle of incidence and purging) 

coupled with some data pre-processing and selection of ‘robust’ parts of the spectrum.  

However, this approach can not overcome the problem of calibration transfer between 

instruments of different types (scanning, PDA and filter).  Further, in practice, no 2 

instruments can be made to have exactly the same specifications.  

Another approach is to eliminate the sources of data variation that are not 

intrinsically related to the attribute being predicted, but are a result of features which 

are specific to the instrument, the experimental conditions or the sample.  Such 

variation may be removed using data pre-processing.  de Noord (1994) and Swierenga 

et al. (1998). used 2 methods to improve the robustness of multivariate calibration 
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models, namely data pre-processing and adaptation of the calibration model by 

piecewise direct standardisation.  Data pre-processing techniques can eliminate effects 

such as baseline shifts (first and second derivatives); multiplicative and additive 

effects caused by different particle sizes (multiplicative scatter correction); 

information not relevant spectrally to the attribute being measured (wavelength 

selection); and wavelength shifts and slope variation in a spectrum (standard normal 

variance transformation) (Shenk and Westerhaus (1991), Barnes et al. (1989), 

Bouveresse and Massart 1996)).   

The development of ‘robust’ calibration models is another strategy to minimise 

the need to standardize instruments (de Noord 1994).  One approach involves simply 

incorporating all relevant sources of variation within the model (e.g. undertaking 

spectral measurements over time, different instruments, instrument temperatures etc.).  

According to de Noord (1994) this technique is generally not applicable unless the 

differences between populations are small to moderate.  This is because of the 

clustering of spectral data due to the discrete performance of each instrument. 

Shenk and Westerhaus in their chemometric software package WINISI 

standardize within instrument types (monochromators) and between instrument types 

(monochromator to filter) using single sample or multiple sample standardisations to 

make spectra alike between master and host instruments.  The technique involves 

scanning known samples (‘check samples’) on the master and then the host 

instrument.  An offset correction (photometric correction) is then made in the simple 

single sample standardisation method, while more complex mathematics (e.g. 

quadratic correction for wavelength differences between instruments, linear slope and 

bias corrections for each wavelength) are used in the multiple sample standardization.   
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Another technique involving collection of spectra of standard samples on both 

slave and master instruments is that of direct standardisation.  Direct standardisation 

involves transforming spectra gathered on 1 instrument (master) to appear as if they 

were measured on another instrument (slave).  Swierenga et al. (1998) concluded that 

direct standardisation gives slightly better or comparable results with regard to data 

pre-processing when the model is transferred between instruments.  However, direct 

standardisation requires more information than data pre-processing.  The same 

samples must be run on all instruments to be standardised, and ‘standard’ samples as 

close as possible to the samples being sorted must be used.  For stable products such 

as wheat this is possible (although with the danger of sample repacking during 

transport between instrument locations).  However, for perishable items such as intact 

fruit, this issue precludes standardisation of instruments at different physical 

locations.  The development of a stable ‘standard’, spectrally similar to a fruit, would 

be very useful! 

CONCLUSION 

There are many reports of the use of NIRS to predict internal quality attributes 

of fruit.  However, interpretation of literature reports of NIRS model development 

requires a level of detail to be provided that is, unfortunately, frequently lacking.  All 

reports of uses of NIRS should be clear with respect to population structure (e.g. 

selection method, source and relationship between the calibration and validation 

populations) and should report the populations’ SD values, spectral range used and 

data pre-processing techniques.  Calibration and prediction results should be reported 

as Rc
2, RMSECV, SD and Rv

2, RMSEP and SD, respectively.   



 
   

28

Near infra-red spectroscopy has been used to ascertain quality attributes 

non-destructively of both wet and dry agricultural commodities.  Some work has been 

undertaken on intact fruit with regard to robustness of NIR calibration models (time 

and different cultivars/varieties).  However, many previous studies have been limited 

because of the lack of true validation that is, validation of the calibration model on a 

population truly independent of the calibration population.  For NIR technology to 

have practical and commercial applications in the food/horticultural industry, the 

question of how robust NIR calibration models are over time, cultivar/variety and 

growing district must be answered.  This involves optimising and establishing 

protocols for data pre-treatments, population structuring and subsequent chemometric 

analysis utilising various regression techniques.   

Thesis direction  

Many NIRS based calibration models for intact fruit assessment have been 

developed and reported by various groups.  However, at the time of conception of this 

thesis (1997), there were no published reports on the robustness of calibration models 

on new validation populations.  Subsequently literature reports (see above) have 

identified problems with robustness of NIR calibrations for intact fruit, particularly 

across seasons.  Existing fruit spectra and related attribute databases were available 

(the Journal of Near Infrared Spectroscopy maintains a collection of spectral data 

associated with published manuscripts), which could be used to consider model 

robustness.  However different spectrometers and optical arrangements used in the 

collection of these databases make integration of data from different population within 

such databases meaningless.   
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Therefore, in this thesis an instrumentation platform was developed with regard 

to detector, light source and optical mode (Chapter 2).  This platform was then used to 

collect spectra of various horticultural produce (intact mandarins, melons and 

macadamia kernels) from different growing districts, time of harvest, variety and 

seasons.  Calibration model development was optimised with regard to attribute 

distribution within the sample, spectral window, mathematical treatment of the 

absorbance data (e.g. derivatisation and gap size), data smoothing and scatter 

correction techniques (e.g. in mandarin, Chapter 3).  The improvement in performance 

of calibration models for prediction of TSS and DM in intact mandarin fruit (a high 

moisture product) was assessed with regard to various techniques of sample selection 

and subsequent inclusion in the existing calibration population (model updating) 

(Chapter 4).  This work was repeated using intact melon fruit of different varieties 

(Chapter 5).  A low moisture product (intact macadamia kernels) was then assessed 

for oil and moisture content with various instruments and optical arrangements.  

Model updating was also assessed for this product using oil content (Chapter 6).  The 

final chapter draws together these results with final conclusions and 

recommendations.   
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2 
APPLICATION OF 

COMMERCIALLY AVAILABLE, LOW COST, 
MINIATURIZED NIR SPECTROMETERS TO 
THE ASSESSMENT OF THE SUGAR 
CONTENT OF INTACT FRUIT1 

ABSTRACT 

Recent decreases in costs, and improvements in performance, of silicon (Si) 

array detectors open a range of potential applications of relevance to plant 

physiologists, associated with spectral analysis in the visible and short-wave near 

infra-red spectrum.  The performance characteristics of 3 commercially available 

‘miniature’ spectrometers based on Si array detectors operating in the 650 – 1,050 nm 

spectral region (MMS1 from Zeiss, S2000 from Ocean Optics, and FICS from Oriel, 

operated with a Larry detector) were compared with respect to the application of non-

invasive prediction of sugar content of fruit using near infra-red spectroscopy.  The 

FICS-Larry gave the best wavelength resolution, however, the narrow slit and small 

pixel size of the CCD detector resulted in a very low sensitivity and this 

instrumentation was not considered further.  

                                                 

1 This chapter has been published in the Australian Journal of Plant Physiology, 2000, 27, 1175-1186 
under the title: ‘Application of commercially available, low-cost, miniaturised NIR spectrometers to 
the assessment of the sugar content of intact fruit’.   
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Wavelength resolution was poor with the MMS1 relative to the S2000 (e.g. full 

width half maximum height (FWHM) of the 912 nm Hg peak, 13 and 2 nm for the 

MMS1 and S2000 respectively), but the large pixel height of the array used in the 

MMS1 gave it a sensitivity comparable to the S2000.  The signal to noise (S/N) 

standard error ratio of spectra was greater by an order of magnitude with the MMS1, 

relative to the S2000, at both near saturation and low light levels.  Calibrations were 

developed using reflectance spectra of filter paper soaked in a range of concentrations 

(0 – 20% w/v) of sucrose, using a modified partial least squares procedure.  

Calibrations developed with the MMS1 were superior to those developed using the 

S2000 (e.g. coefficient of correlation of 0.90 and 0.62, and standard error of cross-

validation of 1.9 and 5.4%, respectively), indicating the importance of high signal to 

noise ratio over wavelength resolution to calibration accuracy.  The design of a bench 

top assembly using the MMS1 for the non-invasive assessment of mesocarp sugar 

content of (intact) melon fruit is reported in terms of light source and angle between 

detector and light source, and optimisation of math treatment (derivative condition 

and smoothing function).   

INTRODUCTION 

Throughout the past 50 years, breeding and post-harvest physiology programs 

associated with fruit have focussed on the production issues of quantity, and quality 

with respect to storage life and visual appearance.  The consumer perceives that eating 

quality of fruit has decreased over this time frame.  Agronomic and breeding 

programs can deliver fruit with improved eating quality, however this goal has not 

received emphasis because of the difficulty of assessing internal attributes of every 

item of fruit.  Various non-invasive technologies such as nuclear magnetic resonance, 

chlorophyll fluorescence, acoustics, and near infra-red spectroscopy (NIRS) can be 
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applied to the task of non-invasive assessment of fruit eating quality attributes.  At the 

present time, NIRS is the most appropriate technique in terms of speed of assessment 

and cost.   

Near infra-red spectroscopy has been applied to the non-invasive estimation of 

fruit eating quality, and is in commercial use in Japan (Kawano 1994b).  Published 

reports of such applications have largely involved either the use of research grade near 

infra-red instrumentation (Yermiyahu et al. 1997), unsuited to packing shed or field 

use (e.g. Guthrie and Walsh (1997a), instrument value ca. $AUD 100,000) or the use 

of purpose built spectrometers, unavailable for general application (e.g. Jaenisch et al. 

(1990), Bellon et al. (1993), Peiris et al. (1998b)).  During the mid to late 1990s, 

however, several low cost (< $AUD 10,000), miniature (spectrometer size < 500 cm3), 

array spectrometers capable of operation up to 1,050 nm became commercially 

available.  These spectrometer modules are finding use in a range of instrumentation 

of interest to plant physiologists (e.g. portable spectroradiometers). 

Osborne et al. (1996) reported the use of the Zeiss MMS1 spectrometer for the 

prediction of sugar content of kiwifruit, and Bellon and Vigneau (1995) reported the 

use of an Oriel Instaspec 2 to predict sugar content of apples, under laboratory 

conditions.  Mowat and Poole (1997) employed an Ocean Optics S1000 and a laptop 

computer to discriminate between field populations of kiwifruit.  However, the choice 

of instrumentation for the task of non-invasive assessment of fruit quality is made 

difficult by a lack of published specification requirements for this task.  We have 

contributed to this field with a consideration of the wavelength resolution and signal 

to noise (S/N) requirements of the task (Greensill and Walsh 1999).  In the current 

manuscript we review the design requirements for this application, compare 

commercially available spectrometer modules that have been used by different 
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researchers with respect to these criteria, and report on the design of an optical system 

suited to the assessment of melons. 

Infra-red (IR) radiation is strongly absorbed by organic molecules, with the 

wavelength of absorption characteristic of the molecular bond.  Overtones of the 

fundamental band (IR) frequencies, particularly those arising from R-H stretching 

modes (O-H, C-H, S-H, N-H, etc.), cause absorbance in the NIR region of the 

spectrum, although this absorbance is typically 10 – 1,000 times weaker than that of 

the fundamental band.  Infra-red peaks are narrow and diagnostic, and thus 

instrumentation capable of high wavelength resolution is desirable.  In contrast, peaks 

in the NIR spectra are broad, up to 100 -150 nm wide.  However, as radiation sources 

are readily available to deliver high intensities in the NIR region and as detectors 

sensitive to this region have a relatively low S/N, NIRS lends itself to the 

quantification of organic constituents.   

Near infra-red spectroscopy has been used in many fields, with most work 

carried out in the region of 1,100 – 2,500 nm (lead sulphide (PbS) detector).  

However, strong absorbance by water at around 1,600 nm has restricted use of the 

technique to dry materials and to reflectance optics. Hydrated objects are 

characterised by complicated hydrogen-bonding interactions between water, sugar, 

protein, etc., which complicate the spectra obtained.  The application of short wave 

NIR (700-1,100 nm) is promising because: (1) the bands are ascribed to the third and 

fourth overtones of O-H and C-H stretching modes and are expected to be separated 

due to anharmonicity, (2) lower absorbance at these wavelengths allows for 

transmission optics, and (3) the corresponding instrumentation is low-cost and suited 

to process control, and portable enough for in situ field measurements.  The ability to 

collect and interpret spectra of hydrated objects using short-wave NIR has blossomed 
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in the past decade, with advances in detector arrays, fibre optics and personal 

computing power.   

Unfortunately, due to the complexity of NIR spectra (band overlaps), relatively 

sophisticated chemometric procedures (data processing such as derivatives, and data 

analysis using multiple linear, partial least squares or neural network regression 

techniques) are required for spectral analysis.  Spectral data can easily be over-fitted 

in the regression analysis.  The resultant calibration is useful for the predictions within 

the populations from which it was developed, but can fail in use on new populations 

(i.e. the calibration is not robust).  Instrumentation drift over time can also result in 

prediction failure, and differences between instrument units can preclude calibration 

transfer between instruments. 

The design of the spectrometer can be rationalised with respect to the 

application.  For example, given the broad character of the absorption peaks in the 

NIR region, it is possible that spectral resolution may be traded off to increase 

detector sensitivity (i.e. a wider slit, or wider pixels).  Spectral resolution may be 

determined by pixel dispersion (the range of wavelengths divided by the number of 

pixels), but is otherwise a function of slit width as well as the quality of the dispersive 

element (e.g. density of lines on grating).  Further, the dispersive element may be 

chosen with transmissivity characteristic, rather than wavelength resolution, as the 

primary feature.  The type of detector should also be considered with respect to the 

application requirements.  Silicon (Si) detectors are sensitive into the NIR up to about 

1,100 nm, while indium gallium arsenide (InGaAs) detectors are useful over the 900 

to 1,700 nm spectral region.  However, Si detectors are preferred for reasons of cost 

and S/N.  Photodiode silicon detectors are approximately 100 times less sensitive to 

light than charge coupled device (CCD) Si detectors, but the higher saturation level of 
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the photodiode support a 10 fold higher maximum S/N ratio for this detector, relative 

to CCD detectors (i.e. 10,000 cf. 1,000).  Overall, CCD’s are preferred for very low 

light applications, while photodiodes are the better choice for accurate absorbance 

measurements when higher light levels are available (Oriel 1994).  However, signal 

per detector pixel can be increased by increasing the height of the pixel and slit, by 

focussing light from a high slit onto the array or by summing columns in a 2 

dimensional array. 

The specification requirement for a spectrometer to support NIRS assessment of 

fruit in an in-line or field setting includes high S/N ratio, relatively high sensitivity 

(particularly if complete transmission spectroscopy is intended), and tolerance to 

vibration and dust.  In-line application also requires the capacity for rapid spectral 

acquisition, with assessment of up to 10 pieces of fruit per second.  Scanning grating 

instruments, with light detected by a single detector, are too slow in this respect, and 

are also vibration sensitive in terms of wavelength calibration.  A stationary dispersive 

element and a fixed detector array can be very robust in terms of wavelength 

reproducibility, and very rapid in terms of spectra acquisition.  Therefore, the typical 

spectrometer for the in-line sorting of fruit will consist of an entrance slit (with an 

inverse relationship between spectrometer sensitivity and wavelength resolution), a 

dispersive element (prism, grating or acousto-optical tuneable filter (AOTF)), a fixed 

array detector (linear Si or InGaAs photodiode array (PDA); or linear or 2 

dimensional charge coupled device array (CCD), and an analogue to digital 

conversion device (usually 8 to 16 bit, i.e. a grey scale of 256 to 65,536 levels, 

typically up to the dynamic range – maximum signal/detection limit – of the 

instrument).  A grating is the usual choice for the dispersive element, blazed at a 

wavelength in the NIR to maximise the efficiency of light transmission in this range, 



 36

although the spectrometer used by Dull et al. (1989) and Dull et al. (1992); to assess 

melon soluble solids content and Peiris et al. (1998b); to assess peach soluble solids 

content, utilised an AOTF as the dispersive element.  The detector is usually either a 

Si PDA (as in the Zeiss MMS1, as used by Osborne et al. (1996); and the Oriel 

Instaspec 2, as used by Bellon and Vigneau (1995), or a linear CCD array (as in the 

Ocean Optics S1000, as used by Mowat et al. (1997)).  Bellon et al. (1993) described 

the application of a 2 dimensional CCD array, comprised of 500 by 582 pixels (pixels 

17 by 11 µm).  A grating was used to disperse the light such that rows represent 

spectra, and columns were averaged to increase the S/N ratio.  The Oriel FICS unit is 

capable of accepting various detectors, but is optimally used with a 2,500 µm high 

PDA detector.  As costs decrease, InGaAs arrays will offer potential, operating over 

the wavelength range 900 – 1,700 nm. 

The spectral response, and the stability of this response, of a spectrometer will 

be effected by the spectral output of the light source, transmission and reflection 

characteristics of the optical path within the spectrometer (e.g. entrance slit width, 

grating groove density), the stability of the mounting of the optical components (with 

respect to vibration and thermal expansion coefficients), the spectral response of the 

detector, and the stability of the electronics.  The effect of trade-offs between 

wavelength resolution and decreased light levels at the detector (e.g. narrower 

entrance slit), and between S/N ratio and detector sensitivity (i.e. photodiode cf. CCD) 

encountered in the choice of NIR instrumentation, deserve attention with respect to 

the task of assessing the sugar content of intact fruit.   

In this manuscript we evaluate 3 commercially available, low cost NIR 

spectrometers which differ in terms of the aforementioned parameters, with respect to 

the non-invasive measurement of Brix (sugar content) of melon fruit.  We also report 
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on the optimisation of an optical configuration suited to the assessment of melons, and 

the optimisation of chemometric processing technique.  A field portable unit has 

subsequently been based on this design, and melon spectra collected across growing 

district and time to explore calibration robustness issues.   

MATERIALS AND METHODS 

Spectrometer description 

Three commercially available miniature spectrometers, with gratings chosen for 

operation in the NIR, were acquired – the Zeiss MMS1 (Zeiss, Germany), the Ocean 

Optics S2000 (Dunedin, Florida, USA, distributed through LasTek, Adelaide, 

Australia) and the Oriel Fixed Image Compact Spectrometer (FICS, model 77443), 

using a Larry linear CCD array (distributed through LasTek, Adelaide, Australia). 

The Zeiss MMS1 (Monolithic Miniature Spectrometer), released in 1994, 

consists of a block of glass (UBK 7) with the imaging grating directly replicated onto 

1 surface.  The body thus acts as the dispersive element, and also images the entrance 

slit onto the diode array by varying groove density and using curved grooves to 

correct coma and flatten the focal curve to optimise use of the flat detector structure (6 

mm long).  The refractive index of the material (UBK 7) used in the construction of 

the body is higher than that of flint glass, giving greater angles of refraction and thus 

enabling the unit to be reduced in size.  With the monolithic construction, the grating 

is immovable and thus vibration tolerant and protected against dust, and the 

spectrometer is relatively tolerant of temperature changes (wavelength drift of 0.012 

nm/K specified).  A fibre optic cross section converter is employed, with a linear 

arrangement of 30 quartz fibres (each 70 µm wide) acting as slit for the instrument.  

Thus slit width is not alterable.  A Hammamatsu diode array (S3904-256Q, 256 
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elements, each 25 x 2,500 µm, 6 mm total length) was used as the detector.  With 

detection of wavelengths between 300 and 1,150 nm, the MMS1 has a pixel 

dispersion of 3.3 nm/pixel.  Order sorting filters are applied during manufacture to 

different regions of the array to eliminate detection of second order spectra over this 

wide wavelength range.  A 12 bit analogue to digital conversion device was used, 

under the control of Zeiss software.  The Zeiss software supplied with the MMS1 

employs a smoothing function for its graphical display, but not on saved data, as used 

in the calculations of mean and standard error of signal in this study. 

The Ocean Optics S2000, released in 1997, has increased sensitivity relative to 

the original 1992 release (S1000).  A 2,048 element linear CCD array (each 12.5 x 

200 µm, 4 mm total length) is employed, with only the mid-section used to minimise 

problems with field distortion.  To optimise use in the NIR region, an order sorting 

filter (550 nm) was factory installed.  With the grating (# 14, blaze 1,000 nm, 600 

l/mm) and the slit width (50 µm) chosen (factory installed), a 3 nm resolution is 

specified.  With a nominal wavelength range of 632 to 1,278 nm, and a number of 

blackened pixels, the S2000 has a pixel dispersion of 0.36 nm/pixel.  A 12 bit 

analogue to digital conversion device was used, with data acquisition controlled by 

Spectra Array (LasTek, Adelaide, Australia). 

With the Oriel, the slit is mounted on a slide, and so can be varied.  A 25 µm slit 

was used in this study.  A 2,048 element linear ‘Larry’ CCD array (12.5 x 200 µm) 

was employed as the detector.  With the grating (blaze 1,000 nm, 600 l/mm) chosen, a 

wavelength range between 300 and 1,150 nm was detected, giving a pixel dispersion 

of 0.41 nm/pixel.  A 12 bit analogue to digital conversion device was used, with data 

acquisition controlled by Spectra Array (LasTek, Adelaide, Australia). 
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Spectrometer comparisons 

The performance of the spectrometers was compared in terms of wavelength 

resolution and stability, relative spectral sensitivity, relative detector sensitivity, signal 

to noise ratio, stability over time and variation in temperature and calibration 

performance.  To achieve these comparisons, wavelength calibration was undertaken 

using a mercury argon lamp (HG1, Ocean Optics), and spectra were acquired of a 

reference material (WS - 1, halon reference, Ocean Optics) and of samples (i.e. 

Whatman # 1104 filter papers immersed in a range of concentrations of sucrose, then 

allowed to drain prior to scanning.  

Spectra of filter paper soaked with sucrose solutions were collected using a 

reflectance probe with 6 illumination fibres and 1 read fibre (all fibres 400 µm in 

diameter, R400 - 7, Ocean Optics).  The read fibre was directed to a spectrometer, 

while the illumination fibres were connected to a 6 W tungsten halogen light source 

(LS - 1, Ocean Optics).  Sub multi assembly (SMA) connectors (NA 0.22) were used 

to connect these items.  Spectrometer temperature was varied by placing the 

spectrometer within the oven of a Fisher Gas Partitioner (Model 1200) and within an 

ice - box, and monitored by a thermocouple placed in contact with the spectrometer 

body.  Temperature was ramped from ambient (22°) to 0°C, and then increased to 

45°C, at approximately 0.2°C/min.   

NIRS calibration technique 

Two populations (n = 40 (2 spectra per fruit); n = 210 (1 spectra per fruit); 

combined Brix range 5.4 to 11.2°) of rockmelons (var. ‘Doubloon’) were sourced 

from the Bowen-Burdekin (North Queensland) region in November 1998 for use in 

the comparison of instrumentation.  A further 10 populations (total n = 1,991, 2 
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spectra per fruit, Brix range 4.4 to 12.2°) of rockmelons (4 varieties, from various 

growing regions) were obtained during 1998 and 1999 and spectra collected using the 

purpose built instrument described below.  This larger data set was used in the 

consideration of the optimal data treatment for calibration, with the optimal data 

treatment then used for the calibrations involving the comparison of instrumentation 

reported in this manuscript.  Spectra acquisition and wet chemistry occurred within 3 

days of harvest at the ‘slip’ stage (fruit breaking away from peduncle).  Spectral data 

was acquired of an area of the fruit equidistant between point of attachment of 

peduncle and corolla, but not of an area which had been in contact with the ground 

during fruit growth.  Where 2 spectra were acquired per fruit, spectra were acquired 

from opposite sides of the fruit.  Juice was extracted of 40 mm diameter plugs of fruit 

mesocarp tissue underlying the assessed areas, with soluble solids concentration 

assessed using an Erma (Tokyo, Japan) digital refractometer.  While a range of ca. 6° 

Brix was recorded between different fruits (population ranges reported above), a 

range of ca. 1.5° Brix units was also recorded within the central region of a given fruit 

(i.e. around the ‘equator’ of the fruit).  Brix of prepared sucrose solutions was also 

measured using the Erma refractometer. 

Zeiss and Spectra Array files were converted to JCAMP format, and imported 

into the chemometric package WINISI (version 3.0, Infrasoft International, PA, 

USA).  Spectral outliers were defined using the WINISI critical ‘GH’ statistic (a 

measure of distance of spectral sample to population mean, based on an estimate of 

the Mahalanobis distance, D, calculated on principle component scores, defined as 

GH = D2/f, where f is the number of factors in the PLS regression) set to a value of 3.  

Analysis involved a modified partial least squares (MPLS) procedure using raw, first 

or second derivative absorbance data and 6 cross-validation groups.  Standard normal 
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variance (SNV) and detrend were used for scatter correction.  The effect of the 

number of data points used in the derivative calculation (‘gap’) and the number of 

data points used in a smoothing routine offered in the WINISI software was 

considered.  As suggested in the WINISI manual, calibrations were compared 

primarily on the root mean square error of cross validation (RMSECV) statistic, 

where RMSECV should not be more than 20% greater than RMSEC, and attention 

given to the 1-VR (variance ratio, i.e. regression coefficient of predicted on actual 

Brix for the validation population) statistic.  The standard error of calibration 

(RMSEC) and regression coefficient of predicted on actual Brix for the calibration set 

(Rc
2) are reported.  Note that the terms RMSECV and 1-VR, and RMSEC and Rc

2, 

respectively, are directly related for a given population (e.g. Rc
2 = 1 – (RMSEC/SD)2, 

where SD is the standard deviation of the actual Brix for the population). 

Optimisation of optical configuration for the non-invasive assessment of melon 

fruit sugar content 

Philips halotone (12V, 50W, 50o light spread, aluminium reflector) lamps were 

used as light sources and the Zeiss MMS1 unit used as the detector.  Reflectance (in 

which specularly reflected light is received by the detector) and partial transmission 

optical arrangements were trialled, as the optical density of the fruit prevented full 

transmission optics.  The core configuration consisted of the detector fibre optic 

positioned to view the ‘top’ of the fruit (a position on the fruit equidistant from 

peduncle and blossom ends which was not an area of the fruit which had rested on the 

ground during fruit growth).  Lamp(s) were positioned to illuminate the fruit at some 

(varied) distance from the area seen by the detector (i.e. angle between area of 

detection, centre of fruit and area of illumination varied). 
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The intensity of light received by the detector and the calibration performance 

(for prediction of mesocarp Brix) was considered with reference to the following 

variables:  (i) the angle of incidence of light onto the fruit surface, (ii) the angle 

between detected area and illuminated area with reference to the centre of the fruit 

(i.e. distance between detected area of fruit and illuminated area), (iii) the number of 

lamps employed, (iv) the distance from detector fibre optic to fruit, (v) the presence of 

a shroud between detector fibre optic and fruit surface and (vi) the duration of 

illumination (with respect to temperature of fruit). 

RESULTS AND DISCUSSION 

Wavelength accuracy and resolution 

The instruments were calibrated using a mercury argon (HgAr) lamp, and 

spectra of the mercury argon lamp acquired at near saturation count at the 842.5 nm 

emission line (Fig. 1).  The spectrum acquired with the MMS1 unit demonstrated a 

poor wavelength resolution relative to either the S2000 (Fig. 1) or the Oriel unit (data 

not shown).  Second order spectral peaks were recorded with the S2000, but not the 

other instruments (e.g. at 1,080 and 1,155 nm, data not shown).  The peak at 912.3 nm 

was chosen for further characterisation as it was isolated from other peaks in the 

MMS1 spectrum.  Spectra were acquired with the count of this peak at near saturation 

and normalised between instruments.  The line width (full width at half maximum, 

FWHM) of the Oriel and S2000 was 1.2 and 2.1 nm, respectively, an order of 

magnitude superior to the MMS1 result of 13.1 nm.  These results are consistent with 

the slit widths, pixel dispersion and geometries of the 3 units.  
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Figure 1.  Spectra of a mercury argon lamp acquired with the Zeiss MMS1 (red 
line) and the Ocean Optics S2000 (black line) spectrometers.  Inset illustrates the 
resolution of the 912 nm peak by the 2 devices (with detector response 
normalised to output at this wavelength). 

 

Array spectrometers have a reputation for wavelength precision, relative to 

instruments in which the monochromator is a moving grating (and therefore sensitive 

to mechanical disturbance).  The wavelength calibrations of the MMS1 and S2000 

were checked periodically over a period of 6 months.  During this period the 

instruments were used in air-conditioned laboratories, but were subject to mild shocks 

and temperature fluctuations during transport between laboratories.  No recalibration 

was necessary over this period for either instrument (i.e. measured position of 912.3 

nm spectral line of HgAr lamp did not vary by more than 0.3 nm).  However, the 

FWHM of array spectrometers can be sensitive to temperature, as differential 

expansion of materials within the spectrometer changes the geometry of the light path.  

The monolithic construction of the MMS1 should be advantageous in this respect.  
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Wavelength accuracy and FWHM was stable for both the MMS1 and the S2000 over 

the temperature range expected in a packing shed environment.  The FWHM of the 

MMS1 was estimated at between 13.04 and 13.13 nm, with no consistent change as 

the temperature of the spectrometer was varied between 4 and 45°C (data not shown).  

The FWHM of the S2000 varied between 2.06 and 2.12 nm as temperature was varied 

over this range, tending to increase with temperature (data not shown).  

Relative spectral sensitivity 

The 3 spectrometers employed silicon based detectors, and so are expected to 

show decreasing sensitivity through the region 700 – 1,100 nm, with no response 

beyond 1,100 nm.  However, the spectral sensitivity of the instrument can be altered 

by doping of the silicon in the detector, by use of coatings over the surface of the 

detector elements, and with respect to the spectral efficiency of the grating (primarily 

determined by the blaze wavelength).  Spectra were acquired using the 3 instruments 

of the reference material in reflectance mode, using the interactance probe and a 

tungsten halogen light source.  Spectra with a maximum count level near saturation 

were acquired for each spectrometer, and spectra compared after normalization to the 

count at 730 nm (Fig. 2).  The MMS1 was more sensitive than the other instruments 

over the wavelength range 750 – 1,050 nm, and particularly over the region 800 – 900 

nm.  The Oriel-Larry unit was more sensitive at wavelengths between 650 and 700 nm 

than at 720 nm (data not shown).  The spectrum acquired using the MMS1 was also 

smoother than equivalent spectra acquired with the FICS or S2000.  An increase in 

count after 1,060 nm was recorded with the S2000, a result interpreted as a second 

order spectra (the S2000 unit employed a 550 nm primary cut-off filter). 
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Figure 2.  Relative spectral sensitivity (lines) and signal to standard error ratio 
(circles) of spectra collected using the MMS1 (red dotted line, solid circle) and 
S2000 (solid line, open circle) spectrometers.  Spectra were acquired using the 
same integration time (100 ms), light source, fibre optic guides and sample 
(reference material) for the 2 devices.  Mean signal and mean signal divided by 
standard error of measurement at each wavelength (n = 50) are displayed.  Note 
the scale change for the Zeiss MMS1 signal to noise ratio.  (A) Light intensity 
was adjusted such that the output of each detector was near saturation, and 
normalised to output at 720 nm.  (B) Spectra were acquired on both instruments 
at the same, relatively low, light intensity. 

 

Spectra were recorded of the HgAr lamp using the MMS1 spectrometer, while 

altering the temperature of the spectrometer between 0 and 45°C (data not shown). 

The measured count of a ‘dark ‘ region of the HgAr lamp spectrum (870 nm) 

increased with temperature by a count of 0.33 per °C (on a count of 29 at 0°C, linear 
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regression, R2 = 0.913). This increase will reduce dynamic range with temperature 

increase.  The measured count of the 912 nm emission line was more responsive to 

temperature, increasing by a count of 10.96 per °C (on a count of 2,757 at 0°C, linear 

regression, R2 = 0.913).  This result is consistent with Zeiss MMS Spectral Sensor 

product information (7 - 802e), which reports a sensitivity increase of ca. 0, 0.18, 0.47 

and 0.69% per °C at 500, 735, 912 and 1,000 nm, respectively.  Thus an increase of 

ca. 12 counts per °C on a count of 2,757 is expected.   

Thus detector spectral sensitivity and dark current are changing with instrument 

temperature.  These changes may be accommodated in a field application by 

minimising detector temperature change, and by collecting reference and dark spectra 

at the same instrument temperature as experienced while collecting sample spectra. 

Relative detector sensitivity 

Reflectance spectra of a reference material under halogen lamp illumination 

were acquired using the 3 spectrometers at a range of probe heights (i.e. different 

illumination levels) but the same acquisition time per spectrum (100 ms).  Regression 

relationships were established between the readings of the 3 instruments.  Detector 

response was recorded at 735 nm, as the wavelength at which highest counts were 

recorded in the MMS1 and S2000 units, and also a wavelength likely to be used in 

calibrations developed for the sugar content of fruit (e.g. Guthrie et al.(1997b)).  The 

S2000 gave count readings 2.65 times higher than that of the MMS1 (R2 = 0.998) (e.g. 

Fig. 2B), with a saturation count reached at only 25% of the range of the MMS1.  In 

contrast, the slope of the Oriel – MMS1 regression was only 0.019 (R2 = 0.996) (data 

not shown).   
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The sensitivity of a CCD array to light, in terms of electrons/count, is reported 

to be ca. 150 times greater than that of a PDA (Oriel 1994).  The low sensitivity of the 

Oriel FICS assembly was primarily due to the design of the instrument optics to focus 

light onto a 2,500 µm height (PDA) array, not onto a (CCD) detector array only 17 

µm tall, as used in this study.  The relatively high sensitivity of the MMS1, as a 

photodiode array, relative to the S2000, as a CCD array, is explained by the degree of 

pixel dispersion in the 2 units (0.36 and 3.3 nm/pixel in the S2000 and MMS1, 

respectively), and also by the size of the pixels in the 2 arrays.  The MMS1 pixel (25 x 

2,500 µm) has an area 400 times greater than that of the S2000 CCD (12.5 by 12.5 

µm).  Also, the effective slit width of the MMS1, at 70 µm (diameter of fibre optic), 

was greater than that employed in the S2000 (50 µm).  Thus each pixel of the MMS1 

array received ca. 2,500 times greater illumination (number of photons) than in the 

S2000 array, for a given level of detected surface radiance. 

‘Signal to Noise’ Ratio 

Fifty reflectance spectra of the reference material were recorded at near 

saturation levels (3,000 counts with saturation recorded at 4,096 counts on a 12 bit 

analogue to digital (A to D) device for each instrument), and at a low light intensity 

(peak counts of > 300), for each instrument.  The mean was divided by the standard 

error of the count at each wavelength as an estimate of the S/N ratio.  Signal to noise 

ratio was estimated at the peak wavelength of 735 nm.  With spectra recorded at near 

saturation levels, the maximum S/N ratio was approximately 40,000, 1,000 and 4,000 

in the MMS1, S2000 (Fig. 2A) and Oriel units (data not shown), respectively.  At a 

low light level of 10% of saturation for each instrument; the maximum S/N ratio was 
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approximately 3,000, 250 and 400 for the MMS1, S2000 (Fig. 2B) and Oriel 

instruments (data not shown), respectively. 

The total pixel noise in the signal from either the photodiode or CCD array can 

be approximated as the square root of the sum of squares of the following 3 

components, (a) read out noise, which is due to amplifier and electronics, (b) shot 

noise from the signal itself, equivalent to the square root of the signal, and (c) the shot 

noise of the dark current, which is dependent on exposure time and very dependent on 

temperature.  The spectral shape of the noise (mean/standard error) values followed 

that of the signal, reflecting the importance of the signal shot noise to the total noise.  

The S/N ratio should be better for a CCD than a PDA for the operating range of the 

CCD, reflecting a lower read out noise, but the maximum S/N ratio of the PDA 

(achieved at higher signal levels) is expected to be an order of magnitude greater than 

that of the CCD (ca. 10,000 cf. 1,000, respectively; Oriel 1994).  The results obtained 

with respect to maximum S/N of the PDA and CCD detectors was as expected.  

However, the S/N ratio was also higher for the PDA based spectrometer than with the 

CCD based instruments for light levels within the range of operation of the CCD.  The 

low noise of the MMS1 at the lower light level is therefore attributed to a low read out 

noise, relative to that expected for a PDA. 

Bellon et al. (1993) estimated the S/N ratio of their CCD based system by 

dividing the spectrum of a reference material by the standard error of 10 reflectance 

ratios (spectrum of reference material divided by a reference spectrum of the same 

material) at each assessed wavelength (rather than by the standard error of the 

repeated raw spectra).  Assuming spectra were acquired at near saturation levels, and 

given the use of an 8 bit analogue (A) to digital (D) card (i.e. saturation at a count of 

256), the report of a maximum S/N ratio of 90,000 is equivalent to a ratio of 360 (i.e. 
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90,000/256) in terms of the current study.  Thus the S/N ratio achieved by Bellon et 

al. (1993) was similar to that obtained with linear CCD arrays in the current study.  

This is surprising, in that as Bellon et al. (1993) averaged data over 512 rows, noise 

should have been decreased by a factor of the square root of 512 (22.6) over that of a 

single pixel.  The difference is attributed to noisier electronics in Bellon’s equipment. 

Stability of spectrometer and lamp output 

Using a light source which had been activated some 3 hours earlier, the output 

of the MMS1 and S2000 was recorded with respect to time from instrument activation 

(Fig. 3A, 4A).  For the MMS1, counts generally decreased (e.g. at 750 nm, by 25 

counts on 3,500) (Fig. 3A, 4A).  The MMS1 was considered stable within 60 minutes 

of activation.  In contrast, the S2000 was relatively unstable, fluctuating by up to 3% 

of initial response, and not stable even after 90 minutes from activation.  The stability 

of instrument response is a critical parameter in consideration of the frequency of 

referencing required, or the preference for a dual beam over a single beam operation. 

Using a MMS1 spectrometer which had been activated some 3 hours earlier, the 

spectral output of a tungsten halogen lamp was recorded with respect to time from 

activation (Fig. 3B, 4B).  Spectral output decreased by ca. 5%, across most 

wavelengths, but increased by ca. 2%, at 833 nm.  Most changes were complete 

within 30 minutes of lamp activation.  These spectral changes are attributed to the 

chemistry of the tungsten halogen lamp during a warm up period following ignition.  

Parallel data were collected with the S2000, with trends similar to that reported above 

(Fig. 4B).  The stability of the lamp output is also a critical factor in consideration of 

the frequency of referencing required in an application. 
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Figure 3. The stability of (A) detector response and (B) light source, as 
indicated by change in spectrometer response (interactance optics, reference 
sample) for the wavelength range 300 – 1,100 nm with time from instrument and 
lamp activation, respectively.  Data expressed as the difference in the A/D card 
output to that of the first spectra acquired (at 1 second after detector and lamp 
activation, respectively).  Spectra were obtained using a halogen light source and 
teflon as a reference sample. 
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Figure 4. The stability of (A) detector (MMS1, squares; S2000, circles) 
response and (B) light source, as indicated by change in spectrometer response 
(interactance optics, reference sample) at 737 nm (open symbols) and 833 nm 
(closed symbols) with time from instrument and lamp activation, respectively.  
Data expressed as a percentage of the first recording (ca. 1 second after detector 
and lamp activation, respectively).  Data is of the same experiment as presented 
in Fig. 3. 
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Choice of spectrometer for the application of non-invasive sorting of fruit by NIRS 

The application of fruit sorting by NIRS requires an instrument which is 

relatively sensitive to light, in order to capture spectra of fruit in transmission or 

interactance modes without use of an unduly high incident radiation load (with the 

attendant sample heating problems).  The instrument must be sensitive over the 

spectral region 700 – 1,050 nm (or higher), and the detector response must be 

relatively stable.  As noted earlier, wavelength resolution below 10 nm is probably not 

necessary (e.g. Greensill (2000)). 

The Oriel-Larry unit gave the best wavelength resolution of the 3 instruments.  

However, its sensitivity was poor (due to the detector used), and on this basis the 

instrument was eliminated from consideration.  The S2000 gave better wavelength 

resolution and detector sensitivity than the MMS1.  However, the relative response of 

the MMS1 in the near infrared (750 – 1,000 nm) region was higher than in the visible 

region than the S2000 (Fig. 2).  Further, the S/N ratio of the MMS1 was an order of 

magnitude higher than the S2000, both at high light levels (i.e. near detector 

saturation) and at a low light levels (within the detection range of the CCD) (Fig. 2).   

To compare the spectrometers for their application to the task of assessment of 

fruit by NIRS, we captured spectra of filter paper saturated with sugar solutions of 

varying concentration in one experiment.  The MMS1 supported better calibrations 

than the S2000 (Table 1).  We conclude that the attribute of wavelength resolution 

was not important to the calibration process, relative to the attribute of S/N ratio.  Of 

the 3 instruments considered, we recommend the MMS1 for use in the application of 

fruit sorting by NIRS. 
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Optimising optical configuration and instrument parameters for fruit sugar content 

calibration 

Light angle relative to fruit and detector 

The intensity of light detected was not dependent on the angle of incidence of 

the light beam on the fruit surface (data not shown).  This result is explained in terms 

of the diffuse transmission of light through the fruit, with incident radiation scattered 

within the fruit such that the angle of incident illumination has little effect. 

As expected, the intensity of light detected at a given wavelength (800 nm) 

decreased as the light beam was moved away from the detected area. The decrease in 

detector response, R (counts), was described with reference to the distance between 

the centre of the illuminated area and the detected area of the fruit, D (mm).  This 

exercise was undertaken for an optical arrangement involving a single 50 W halogen 

lamp and the detector aligned to the centre of the fruit and positioned at 10 cm from 

the fruit surface (eqn. 1).  The exercise was repeated incorporating a 45 mm diameter 

cylindrical shroud between the detector and the fruit surface, to eliminate specular 

radiation (eqn. 2). 

 R = 18525  e –0.0668 D  (R2  = 0.943)   (light without shroud) eqn. 1 

 R = 64646 e –0.085  D   (R2 = 0.994)   (light shrouded) eqn. 2 

where R is counts and D is the distance between the centre of the illuminated 

area and the detected area of the fruit. 

Thus, moving the detector from 40 to 50° with respect to the light source 

decreased the observed count from ca. 24 to 4% and 7 to 2% of maximum signal (i.e. 

detector saturation; 200 ms integration time) for the non-shrouded and shrouded 

arrangements, respectively.   
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Table 1. Calibration (Rc
2 and RMSEC) and validation (RMSECV) 

regression parameters (modified partial least squares procedure) of spectra 
collected with 2 spectrometers (MMS1 and S2000) using the same optical and 
sample presentation system (fibre optic interactance probe).  Calibrations were 
performed using the second derivative (gap size of 4) of unsmoothed data from 
the wavelength range 700 – 1,050 nm.  Scatter correction was not employed.  
Four spectra were acquired of each of 16 filter paper bundles, each saturated at 
different concentration of sucrose, at approximately 1.5° Brix intervals between 0 
and 20. 

 

Instrument Terms R2 RMSEC RMSECV 
MMS1 2 0.904 1.73 1.85 
S2000 2 0.619 3.44 5.40 

 
We had expected that, at lesser angles of light source to detector, higher levels 

of radiation would be monitored, but that the ‘path’ of this light would be primarily 

through exocarp and outer mesocarp tissues.  Therefore, increasing incident light to 

detector angle should allow for proportionally more spectral information on the tissue 

of interest, the edible mesocarp.  However, at some incident light to detector angle, 

the disadvantage of decreased light transmission (i.e. decreased S/N ratio) must 

outweigh this advantage.  Also, as the angle between incident light and detector is 

increased (particularly beyond 90o); it is expected that proportionally more of the 

detected light will have penetrated the seed cavity and carry spectral information 

about seeds, as well as about mesocarp tissue.   

Spectra were acquired at 4 lamp-detector angles for 40 fruit, using a shroud 

between lamp and fruit.  Calibration statistics (RMSEC and related Rc
2, and 

RMSECV, after outlier removal) were optimal at a detector-lamp-fruit angle of 60° 

(Table 2).  For ease of fabrication, an angle of 45° between incident light and detector 

was adopted in further characterisation of the optical system. 
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Number of lamps 

Increasing the number of lamps was expected to increase the available signal to 

the detector, and decrease the S/N ratio.  Aoki et al. (1996) reported an optical 

arrangement employing 16 lamp positions around the equator of the melon fruit, with 

the detector viewing an area of the fruit at 90° to this plane.  However, the use of 

more lamps will also increase the volume of the fruit ‘sampled’ by the light, which 

may degrade a calibration based on the analysis of a relatively small tissue sample in 

the primary analytical method. 

Increasing the number of lamps from 1 to 4 had little effect on calibration 

performance (Table 2).  Four lamps were employed in further characterisation of the 

optical system.  These lamps were positioned at 45° in the vertical plane, with respect 

to the detector, and at 90° intervals in the horizontal plane, with respect to other 

lamps. 

Number of scans per spectra 

The S/N of spectra will improve proportionally to the square root of the number 

of scans averaged per spectrum.  Calibration RMSECV decreased with increased 

number of scans, although this improvement was marginal and the Rc
 2 and related 

RMSEC terms were degraded between 4 and 16 scans.  Increased scan time will lead 

to sample change through heating, which could alter spectral characteristics and thus 

calibration performance (Guthrie et al. 1998).  However, when fruit were held under 

the lamps for a period of 3 minutes, (fruit internal flesh increased in temperature by 

less than 1°C, while skin temperature rose by greater than 15°C), calibration 

performance was not significantly impacted (Table 2).  Averaging of 4 scans per 

spectra was adopted in further characterisation of the optical system. 
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Detector ‘shrouding’ and distance of detector to fruit 

Calibration performance was degraded by removal of the shroud between the 

detector and the fruit surface, in terms of Rc
2, RMSEC and RMSECV (Table 2). This 

result is consistent with the interpretation that the detection of specular and emergent 

light that has interacted only with the very surface layers (top few millimetres) of the 

fruit surface degrades calibration performance.  The placement of a 40 mm high, 45 

mm diameter collar on the fruit under the detector supported a calibration which was 

apparently superior to the arrangement employing a shroud between detector and fruit 

surface (Table 2).  As both arrangements prevent specular reflections from the fruit 

surface from reaching the detector, equivalent calibrations were expected.  Calibration 

performance was apparently slightly improved in terms of both calibration Rc
2 and 

RMSECV when the distance between fruit surface and detector/light source was 

allowed to vary in response to fruit size (i.e. by ca. 50 mm).  Such change in fruit 

diameter altered the effective distance between illuminated and detected regions of the 

fruit surface.  Further, as the detector fibre optic has a numerical aperture of 0.22 mm, 

an increasing area of the fruit surface is imaged as distance between the probe and the 

fruit surface is increased.  This would result in an increased detector count, offset by a 

decrease in light intensity.  Also, if the field of view of the detector overlaps the areas 

of direct lamp illumination of the fruit surface, specular reflection will also reach the 

detector.  It was expected that calibration performance should therefore decrease 

when distance from detector to fruit varied. 
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Table 2. The effect of lamp-fruit-detector angle, a signal filtering routine, 
number of lights, number of scans averaged per spectrum acquired, and the 
presence of a shroud between lamp and fruit surface on the calibration of Zeiss 
MMS1 spectral data (700 – 1,050 nm) to melon flesh Brix, in comparison with 2 
reflectance mode bench top NIR spectrometers.  Calibrations were developed for 
spectra (n = 40) acquired of a population of fruit (mean 9.5, standard deviation 
1.7° Brix) for various lamp – detector angles and for 3 spectrometers, and for 
spectra acquired of a population of 208 fruit (mean 8.3, standard deviation 1.2° 

Brix) for conditions varying with respect to the number of lights, presence of a 
shroud, and number of scans averaged.  The default configuration consisted of 
shroud between detector and fruit, 4 lamps mounted to illuminate the fruit at 
40°with respect to the detector, and averaging of 4 scans per spectrum, with a 
200 ms integration time per spectrum.  Data of treatments marked with an 
asterisk has been repeated for ease of data comparison.  For condition 16b, fruit 
were held under the lamps for 3 minutes before scanning.  A data treatment of 
scatter correction (SNV and detrend), second derivative gap size of 4, with no 
data smoothing was adopted for all calibrations.  The Savitzky-Golay filtering 
routine (SG) was applied to spectra acquired in the assessment of 40° lamp angle.  
MPLS regressions were performed with all data, and with removal of outlier 
data as identified using the WINISI chemometric package critical global 
Mahalanobis distance (GH) of 3.  The MMS1 was used with a shroud, 4 lamps 
illuminating the fruit at 45°, and 4 scan averaging in the spectrometer 
comparison exercise.  Spectral data over the wavelength range 700 – 1,050 nm, 
700 - 1,700, and 700 – 2,300 nm was used from the MMS1, Perten DA 7000 and 
NIR Systems 6500 spectrometers, respectively. 



 58

 

Calibration mathematics 

The optimal mathematical treatment of spectral data is expected to be specific to 

the instrumentation and the application.  For example, scatter correction routines 

(standard normal variance and detrend in the WINISI software) are typically applied 

to reflectance spectra of samples with a rough, light scattering surface.  First and 

second derivative procedures are useful to remove changes in spectral baseline level 

and slope, and to highlight spectral features.  The optimal value for the ‘gap’ (number 

of data points) over which the derivative is calculated will depend on the bandwidth 

of the spectral feature of interest, and the noise and wavelength resolution of the 

instrumentation used.  Data smoothing routines can also be useful in the reduction of 

noise and elimination of redundant spectral information.  An empirical ‘test it and see’ 

Attributes n Terms R c
2 RMSEC RMSECV Terms Outliers R c

2 RMSEC RMSECV

Lamp angle (°)
20 40 1 0.14 0.99 1.15 1 2 0.19 0.97 1.11
40** 40 3 0.64 0.65 1.18 3 0 0.64 0.65 1.18
40SG 40 3 0.05 1.16 1.40
60 40 4 0.76 0.52 1.96 4 2 0.82 0.43 0.84
80 40 1 0.15 0.99 1.26 4 1 0.38 0.84 1.03

Number of Lights
1 210 7 0.64 0.71 0.90 7 3 0.68 0.68 0.86
2 210 2 0.43 0.92 0.95 6 11 0.61 0.74 0.85
4* 208 6 0.63 0.73 0.88 6 5 0.66 0.69 0.83

No. of Scans
1 210 2 0.45 0.89 0.92 2 3 0.44 0.89 0.92
2 210 2 0.43 0.92 0.95 2 6 0.46 0.88 0.91
4* 208 6 0.63 0.73 0.88 6 5 0.66 0.69 0.83
16a 212 5 0.57 0.78 0.87 6 5 0.63 0.72 0.82
16b 210 6 0.60 0.76 0.84 6 6 0.61 0.74 0.81

Shroud/ pathlength
Shroud on* 208 6 0.63 0.73 0.88 6 5 0.66 0.69 0.83
Collar on 210 6 0.70 0.66 0.81 7 7 0.75 0.58 0.67
Shroud off – fixed 
path

213 2 0.45 0.89 0.91 2 9 0.47 0.87 0.89

Shroud off – variable 
path

196 4 0.50 0.84 0.93 3 15 0.51 0.82 0.87

Spectrometer 
Comparison  

MMS1** 40 3 0.64 0.65 1.18 3 0 0.64 0.65 1.18
6500 (- 2300) 40 1 0.21 0.95 1.07 2 4 0.51 0.79 1.06
6500 (- 1100) 40 4 0.59 0.69 0.97 3 3 0.71 0.55 0.84
Perten (- 1700) 40 3 0.64 0.65 1.18 3 0 0.64 0.65 1.18
Perten (- 1050) 40 1 0.97 0.19 1.07 1 0 0.97 0.19 1.07

All Data Outliers Removed
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approach is generally used to establish the best mathematical treatment for a given 

application.  For example, Guthrie and Walsh (1997b) established that a mathematical 

treatment involving second derivative over 4 data points and smoothing over 4 data 

points was optimal in the calibration of sugar content in intact pineapple fruit using 

Foss NIRSystems 6500 reflectance spectra.   

Calibration mathematical treatment was optimised for the populations used in 

the comparison of optical geometry, with a standard treatment adopted (as used in 

Table 2).  The optimal optical configuration was then used to collect spectra of a large 

number of fruit (see below).  We report here (Table 3) an exercise in comparison of 

mathematical treatments on this larger population, which yielded similar conclusions 

but more marked differences than obtained with the smaller population sets. 

Using the WINISI chemometric package, outlier spectra were detected and 

removed from the data population.  Approximately 5% of spectra were removed from 

populations, resulting in a consistent improvement in calibration performance (Table 

2).  However, as removal of outlier data results in inconsistent population structure, 

this option was not employed when evaluating mathematical treatments (Table 3).  

The scatter correction routines (standard normal variance and detrend) decreased 

calibration performance in terms of RMSECV and Rc
 2 (Table 3).  We attribute this 

result to the optical geometry of the system employed, which was effectively a 

transmission rather than a reflectance system.   
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Table 3. The effect of data treatments (derivative condition and gap size, 
smoothing, scatter correction) on the calibration of Zeiss MMS1 spectral data 
(700 – 1,050 nm) to melon flesh Brix.  Spectral data is of a population of 1,991 
fruit (mean 8.1, standard deviation 1.26° Brix).  Values marked with an asterisk 
represent cases where the smoothing window was larger than the derivative gap 
window.   

 

Various signal filtering routines may be used to remove noise from the acquired 

spectra (e.g. Fourier transform, box car averaging, Butterworth filter).  Osborne et al. 

(1996) reported the use of a Butterworth filter improved the development of 

calibrations of kiwifruit Brix, based on spectra acquired using a Zeiss MMS1 

spectrometer.  As the Savitzky-Golay signal filter was available within the Zeiss 

MMS1 test software, we filtered spectra acquired at a lamp / detector angle of 40°.  

The calibration developed with this data was severely degraded in terms of regression 

coefficient and RMSEC (Table 2), and this treatment option was not considered 

further. 

Derivative Gap Size Smooth Terms R c
2 RMSEC RMSECV Terms R c

2 RMSEC RMSECV

0 0 1* 15 0.55 0.85 0.86 16 0.61 0.78 0.79
0 0 4* 16 0.52 0.87 0.87 16 0.55 0.84 0.86
0 0 10* 15 0.44 0.94 0.95 15 0.48 0.91 0.94
0 0 20* 15 0.31 1.00 1.10 16 0.39 0.98 0.99

1 4 1 15 0.58 0.81 0.84 16 0.64 0.76 0.79
1 4 4 15 0.50 0.89 0.90 15 0.55 0.85 0.85
1 4 10* 16 0.50 0.89 0.91 15 0.49 0.90 0.91
1 4 20* 15 0.34 1.02 1.04 15 0.40 0.98 0.99
1 10 1 15 0.52 0.87 0.90 15 0.55 0.84 0.87
1 10 4 16 0.50 0.89 0.91 15 0.49 0.90 0.91
1 10 10 15 0.42 0.96 0.97 15 0.44 0.94 0.96
1 10 20* 14 0.30 1.05 1.07 16 0.39 0.98 1.00

2 4 1 13 0.59 0.81 0.84 15 0.65 0.74 0.77
2 4 4 13 0.54 0.85 0.88 14 0.59 0.80 0.83
2 4 10* 13 0.49 0.90 0.91 14 0.54 0.86 0.88
2 4 20* 12 0.34 1.02 1.03 14 0.41 0.97 0.98
2 8 1 13 0.50 0.89 0.91 14 0.54 0.86 0.87
2 8 4 12 0.44 0.94 0.95 14 0.49 0.90 0.92
2 8 8 15 0.44 0.94 0.96 14 0.45 0.93 0.95
2 8 10* 12 0.39 0.99 0.99 14 0.43 0.95 0.96
2 8 20* 14 0.29 1.06 1.07 14 0.30 1.05 1.06
2 10 1 14 0.50 0.89 0.91 16 0.56 0.83 0.85

Data Treatment
Scatter Correction (SNV and Detrend) 

Treatment Nil Scatter Correction
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Calibration performance was marginally enhanced by the use of derivatised data 

(second derivative superior to first or no derivative).  The best calibrations achieved 

using ‘raw’, first and second derivative data yielded a RMSECV of 0.79° Brix (no 

smoothing), 0.79° Brix (derivative gap of 4 data points, no smoothing) and 0.77° Brix 

(derivative gap of 4 data points, no smoothing), respectively.  We attribute the relative 

lack of calibration response to the use of derivatives to the transmission optical 

geometry of the system employed.  Derivatives should offer more value in reflectance 

systems in which baseline shifts between samples can be large. 

Calibration performance was degraded as the gap over which the derivative was 

calculated was increased from 4 to 8 to 10 (Table 3).  Calibration performance was 

also degraded by the smoothing of data.  The Zeiss MMS1 has a pixel resolution of 

3.3 nm, and thus smoothing or derivative calculated over 4 data points involves 

averaging of data over a 13 nm spectral range, equivalent to the wavelength resolution 

of the instrument.  Further averaging will involve loss of spectral information.  Also, 

the MMS1 has a high S/N ratio, such that the effect of signal averaging (smoothing) 

to signal precision may not contribute to improved calibration performance.  

Smoothing over a greater gap than used in the calculation of the derivative is expected 

to result in a loss of information, and a slight degradation in calibration performance 

was observed.   

Based on the above observations, we recommend a data treatment of second 

derivative over a gap size of 4, with no scatter correction or smoothing, for this 

instrumentation and optical configuration. 
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Design of field unit for consideration of calibration robustness 

In summary, the following instrument design is proposed for the non-invasive 

assessment of melon using a low cost, commercially available spectrometer module: 

the Zeiss MM1 spectrometer used with a shroud (45 mm diameter, 100 mm length) 

between the detector fibre optic and the fruit surface, and 4*50 Watt tungsten halogen 

lamps and lamps mounted at 90° intervals, positioned 100 mm above the fruit and 

aligned with the approximate centre of the fruit (i.e. angle of 45° between light 

incidence and detected area of fruit).  These features have been adopted in a 

‘luggable’ or ‘at-line’ NIR system that can be transported between pack-houses.  This 

unit incorporates a spring-loaded platform to keep the fruit firmly against the detector 

shroud, while allowing for ease of fruit change over.  The outside dimensions of the 

unit are 400 mm (width) by 400 mm (depth) by 550 mm (height), accommodating 1 

melon at a time, and locating the spectrometer and other electronics above the sample 

chamber.   

The following operational parameters are recommended for the use of this 

hardware: an integration time of 200 ms, as required to achieve a detector response at 

ca. 50% of saturation, with detector and lamp powered up 2 hours before use to ensure 

instrument stability.  Averaging of 4 scans per spectra is recommended to improve 

S/N ratio.  A ‘default’ data treatment of second derivative calculated over 4 data 

points, without further data pre-treatment, is suggested.  We have subsequently 

developed a LabView (National Instruments, Sydney, Australia) based spectral 

acquisition and analysis package which allows application of calibrations to give 

predictions in a real-time basis.  

This system described was benchmarked in terms of calibration performance 

against 2 commercial research-grade NIR spectrometers, operated over the full NIR 
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wavelength capability of these instruments and in reflectance mode (Table 2).  The 

purpose built instrumentation supported a calibration inferior to that achieved using 

the Perten DA7000 (Springfield, USA) and Foss NIRSystems 6500 (Silver Spring, 

USA) operated over a similar wavelength range.  However, the purpose built 

instrumentation is recommended as a field-suitable, low cost alternative.  The 

relatively good performance of the purpose built instrumentation is ascribed to the 

low S/N ratio of the MMS1 detector and optimisation of the system in terms of optical 

geometry of incident light, sample and detector.  We will employ this system to 

collect spectra of melons of various cultivars, growing districts and seasons to further 

develop the consideration of Guthrie et al. (1998) of calibration robustness.  

Harvested rockmelon fruit vary between 6 and 14° Brix, with 10° Brix commonly 

accepted as a quality standard.  Low cost instrumentation which supported a standard 

error of prediction of less than 1° Brix on intact melons would find ready acceptance 

in the Australian melon industry for pack-house grading of fruit.  Further, equipped 

with a robust calibration, this instrumentation should be useful in physiological, 

agronomic and breeding programs targeting melon fruit soluble solids content.  
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3 
CALIBRATION MODEL 

DEVELOPMENT FOR MANDARIN FRUIT 
INTERNAL QUALITY ATTRIBUTES2 

ABSTRACT 

The utility of near infra-red spectroscopy as a non-invasive technique for the 

assessment of internal eating quality parameters of mandarin fruit (Citrus reticulata 

var. ‘Imperial’) was assessed.  The calibration procedure for the attributes of total 

soluble solids (TSS) and dry matter (DM) was optimised with respect to a reference 

sampling technique, scan averaging, spectral window, data pre-treatment (in terms of 

derivative treatment and scatter correction routine) and regression procedure.  The 

recommended procedure involved sampling of an equatorial position on the fruit with 

1 scan per spectrum, and modified partial least squares model development on a 720 

to 950 nm window, pre-treated as first derivative absorbance data (gap size of 4 data 

points) with standard normal variance and detrend scatter correction.  Calibration 

model performance for the attributes of TSS and DM content was encouraging 

(typical Rc
2 of > 0.75 and 0.90 respectively; typical root mean square standard error of 

calibration of < 0.4 and 0.6% respectively),while that for juiciness and total 
                                                 

2 This chapter has been accepted for publication in the Australian Journal of Agricultural Research, 
2005, 56, 405-416 under the title: ‘Assessment of internal quality attributes of mandarin fruit. 1. NIR 
calibration model development’.  Aspects of this work were published in: Proceedings of the 9th 
International Conference on Near Infrared Spectroscopy, Verona, Italy, (Editors AMC Davies and R 
Giangiacomo) 1999, under the title: ‘Development and use of an ‘at-line’ NIR instrument to evaluate 
robustness of melon Brix calibrations’.  Authors were KB Walsh, CV Greensill and JA Guthrie 
(Appendix C).  
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acidity were unacceptable.  The robustness of the TSS and DM calibrations across 

new populations of fruit is documented in a companion study (Guthrie et al. 2005b). 

INTRODUCTION 

Near infra-red spectroscopy (NIRS) has been applied to the sorting of intact 

fruit on total soluble solids (TSS) and dry matter (DM) content (Walsh et al. 2004), 

with commercial application to pack-house fruit sorting lines for the sorting of 

sweetness of citrus, apples, pears and peaches at 3 pieces per second per lane 

commencing in Japan in the mid 1990s (Kawano 1994a).  Commercial application 

within pack-houses of Western countries is nascent.  

Various statistical terms and abbreviations have been used by authors working 

with NIRS technology.  In this manuscript the following terms and abbreviations have 

been employed: bias (bias) is the difference between mean of actual and predicted 

values, standard deviation (SD) of the reference method values, coefficient of 

determination on calibration data population (Rc
2), coefficient of determination on 

validation data population (Rv
2), root mean square error of calibration (RMSEC); root 

mean square error of cross validation (6 groups; without bias correction) (RMSECV), 

root mean square error of prediction (without bias correction) (RMSEP), and RMSEP 

corrected for bias (RMSEP(C)).  The standard deviation ratio (SDR) is calculated as 

SD/(RMSECV or RMSEP).   

Application of NIRS technology to a given fruit commodity requires an 

appreciation of the distribution of the attribute of interest within the fruit, as fruit is 

not internally homogenous.  The mandarin fruit consists of an exocarp (skin) with 

numerous oil glands, a mesocarp (white pith), and an endocarp that produces 

extensions (juice sacs) that occupy space within the carpels.  The juice sacs form the 
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primary edible material of the fruit.  Miyamoto and Kitano (1995) noted Satsuma 

mandarin TSS was greatest in the distal apex of the fruit, decreasing towards the 

proximal (pedicel) end.  The coefficient of variation of TSS within a single orange 

fruit was reported as 10.2, 1.8 and 5.6% in the proximal to distal, around the fruit 

circumference (at an equatorial position), and radial (from centre to skin, at an 

equatorial position) orientations, respectively (Peiris et al. 1999b).  This variation was 

greater than that monitored in a peach and an apple fruit, but less than that in a melon 

fruit (Peiris et al. 1999a).  Near infra-red spectroscopic assessment of citrus fruit at an 

equatorial position is therefore logical.   

The use of NIRS to assess mandarin TSS has been reported by a number of 

researchers.  Kawano et al. (1993) developed multiple linear regression (MLR) 

models using Satsuma mandarin in a transmittance sample geometry, and reported Rc
2 

up to 0.98 and a RMSEC of 0.28% TSS, based on a population with SD of 1.75% 

TSS.  Miyamoto and Kitano (1995) also developed MLR models based on 

transmittance spectra, and reported typical calibration statistics of Rc
2 of 0.88 and 

RMSEC of 0.5% TSS, based on a population with SD of 1.50% TSS.  Ou et al. (1997) 

developed models using Ponkan mandarins in an interactance geometry, and reported 

calibration statistics of Rc
2 of 0.52 to 0.74 and RMSEC of 0.41 to 0.64% TSS, for a 

given harvest area (SD was not reported).  Greensill and Walsh (2002) developed 

partial least squares regression (PLS) models using Imperial mandarins in an 

interactance geometry, and reported typical calibration statistics of RMSECV of 

0.26% TSS using a population of SD 0.45% TSS.  The Rc
2 (calculated in this instance 

as 1 - (RMSECV/SD)2) for these values was 0.67.  McGlone et al. (2003) explored 

the use of several optical configurations and wavelength windows for prediction of 

TSS in Satsuma mandarin, reporting best results (Rv
2 of 0.93 and RMSEP of 0.32% 
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TSS) for a transmittance methodology operating between 700 and 930 nm.  Results 

for an interactance geometry (Rv
2 of 0.85 and RMSEP of 0.47% TSS) were superior to 

that for a reflectance geometry (Rv
2of 0.75 and RMSEP of 0.63% TSS).  

Shiina et al. (1993), Onda et al. (1994), Sohn et al. (2000) and Schmilovitch 

et al. (2000) have reported various levels of success in measuring total acidity (TA) of 

intact pineapple, plum, apple and mango, respectively.  With Ponkan mandarin, Ou 

et al. (1997) obtained Rv
2 of between 0.5 and 0.8 and RMSEP of 0.13 – 0.27% for TA, 

using a calibration developed on fruit from 1 district and used to predict TA for fruit 

from another 2 districts.  Similarly, Miyamoto et al. (1998) used NIR transmittance 

spectra of intact Satsuma mandarins to achieve prediction of TA in separate 

populations (origin of each population not stated), with Rv
2 of 0.83, bias of 0.02% TA 

and RMSEP of 0.15% TA.  However, McGlone et al. (2003) concluded that robust 

TA prediction was not possible in Satsuma mandarin, although Rv
2 of up to 0.65 and 

RMSEP of 0.15% TA could be achieved within a given population through a 

correlation with skin chlorophyll (fruit maturity).   

Calibrations on fruit DM have been reported for kiwifruit and mango (McGlone 

and Kawano 1998; Guthrie and Walsh 1997b), fruit which store starch, with 

conversion to sugar at ripening.  Typical calibration model statistics were Rc
2 of 0.96 

and RMSEC of 0.79% DM.  While citrus fruit do not store starch, DM content may be 

a useful index of certain internal quality defects.  For example, Peiris et al. (1998a) 

reported the use of the second derivative of absorbance at 768 and 960 nm to identify 

fruit with section dryness disorder.  These wavelengths are relevant to water 

absorption.   

For spectra collected using a transmission optical geometry, it is expected that 

calibration model performance will be affected by fruit size.  To address this issue, 
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Kawano et al. (1993) identified absorption at 844 nm as related to fruit (Satsuma 

mandarin) diameter, and normalised second derivative of absorbance data for all 

wavelengths used in the MLR model by dividing by the second derivative of 

absorbance at 844 nm.  However, Miyamoto and Kitano (1995) reported that this 

procedure hindered prediction ability when sample temperature was varied.  These 

authors reported that it was possible to compensate for optical pathlength by including 

the second derivative of absorbance data at, or near, the wavelengths of 740 or 

840 nm as part of a 4 wavelength MLR calibration.   

There are at least 6 prior reports on the application of NIRS to the assessment of 

TSS, 3 studies on TA and 1 study relevant to DM, in intact mandarins.  However, 

these reports vary in the chemometric approaches used (MLR, PLS), data pre-

processing techniques, spectral window, optical geometry, etc.  In the current study 

we seek to confirm the utility of the NIRS method to the assessment of these 

characters, and optimise these variables in the development of a calibration model, 

prior to a companion study of robustness of the model across new populations 

(varying in growing location, time within a season and across seasons).   

MATERIALS AND METHODS 

Plant material and reference analyses 

Mandarin fruit (Imperial variety) were sourced following commercial harvest 

from orchards in Mundubbera (25.6º S, 151.6º E), Bundaberg (24.9º S, 152.3º E) and 

Dululu (23.8º S, 150.3º E), Queensland.  Fruit were sourced from 3 separate farms on 

1 day, from separate harvests of 1 tree over a 14-day period, and from 1 pack-house 

over 4 seasons.  In all, 20 populations of Imperial mandarins (each of approximately 
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100 fruit), obtained over different seasons, growing districts and different harvest 

times from the 1 tree, were used for spectra acquisition and then assessed for TSS.  In 

addition to this, DM and juiciness of 6 separate populations and TA of 1 population 

were assessed.  All populations were alphabetically named in chronological order.   

Three populations of fruit were assessed in consideration of the distribution of 

TSS, DM and juiciness within fruit.  The distribution of TSS and juiciness of the inner 

and outer section of each segment of 3 fruit was assessed (Population 1).  Total 

soluble solids and DM of inner and outer of proximal, equatorial and distal parts of 

each of a further 5 fruit were assessed (Population 2).  Finally, TSS and juiciness of 

the proximal and distal halves of each of 99 fruit were assessed (Population 3).   

All fruit were halved, juiced, and TSS determined by refractometry (Bellingham 

and Stanley RMF 320).  Total acidity was assessed by titration of a 5 mL sample of 

juice against 0.1M NaOH using phenolphthalein as an indicator.  Dry matter of fruit 

halves (with skin), was determined by drying at 70°C to constant weight in a forced 

convection oven over 48 hours.  Juiciness was estimated from the weight of juice 

expressed from a fruit half by a commercial juice extractor (juiciness % = weight of 

juice/weight of fruit * 100).  Data were analysed using ANOVA to determine 

differences in attribute distribution, with testing of significance conducted at the 10% 

level. 

Spectroscopy 

Spectra were collected over the wavelength range 306 – 1,130 nm using a NIR 

enhanced Zeiss MMS1 spectrometer and a 100 Watt tungsten halogen light in the 

interactance optical configuration reported by Greensill and Walsh (2000) (0o angle 

between illumination and detected light rays, with detection probe viewing a shadow 
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cast by the probe onto the fruit).  Spectra were collected from 1 side of each fruit, on 

the equator of the fruit, equidistant from proximal and distal ends with an integration 

time of 30 milliseconds.  For comparison purposes, 1 population was also assessed 

using the partial transmittance optical configuration used by Walsh et al. (2000) (45o 

angle between illumination source and detector, relative to the fruit centre, with 

detector probe in contact with the fruit surface).  Various levels of spectral averaging 

(1, 2, 4 and 32 scans per spectrum) were also undertaken on this population.  Spectra 

were also collected from 1 population at 3 different fruit temperatures (10, 22 and 

30ºC).   

Spectra were collected as raw analogue to digital counts (15 bit), and converted 

to absorbance values using an in-house developed software package.  These data were 

then ported to the WINISI (ver. 1.04a) chemometric software package for derivative 

calculations.  Examples of analogue to digital counts, absorbance and second 

derivative spectra are given in Fig. 1.   
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Figure 1. Near infra-red spectral data of 3 intact mandarins displayed as (a) 
analogue to digital counts including the white reference (open triangle), (b) 
absorbance, and (c) second derivative absorbance data.  The mandarin fruit 
were chosen at random, representing fruit with high (12.7%, closed circle), 
medium (10.2%, open circle), and low (7.6%, closed triangle) total soluble solids.  
Horizontal bars show important spectral areas. 
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Chemometrics 

The software package WINISI (ver. 1.04a) was used for all chemometric 

analysis except as stated.  This package calculates a derivative as a ‘Norris regression’ 

using start, central and end points only over a user definable ‘gap’ (g, wavelength 

range).  The ‘Norris regression’ is calculated by the formula, a – 2b + c, where b is 

the absorbance at wavelength, λ, and a and c are absorbances at wavelengths λ-g and 

λ+g, respectively.  In the data smoothing option, the absorbances at the 3 wavelengths 

used in the derivative calculation can be averaged with a user defined number of 

neighbouring absorbances.  Available scatter corrections include standard normal 

variance (SNV) and detrend.  Standard normal variance weights the absorbance at 

each wavelength by the SD of the calibration population.  Detrending fits a least 

squares quadratic regression to successive wavelength windows.  This curve is then 

subtracted from the spectrum to give the residual spectrum that is used in the 

subsequent calibration.  Calibrations were developed using both step-wise multiple 

linear regression (MLR) and modified partial least squares regression (MPLS).  

Calibration performance was assessed in terms of Rv
2, RMSEP, SDR, slope and bias 

of the validation populations. 

The Matlab PLS and WINISI MPLS techniques gave equivalent model results 

for a given data population (data not shown).  The effect of spectral window on PLS 

calibration model performance for TSS and DM was optimised in terms of RMSEC 

using a PLS interval algorithm, developed in Matlab (ver. 7.0) – PLS toolbox (ver. 3.5 

by Eigenvector).  First derivative (WINISI gap size 4 with SNV and detrend scatter 

correction) absorbance data interpolated to 3 nm steps were used in this exercise.  The 

wavelength range of the spectral windows varied in starting position from 700 –

 930 nm, with an end position of 800 – 1,020 nm, in increments of 3 nm.  The 



 73

combined populations J and K for TSS and population T for DM were used in this 

exercise.   

Data pre-treatment procedures are generally optimised for a given application, 

with a range of derivative and scatter correction techniques trialled, and results (e.g. 

RMSEC, Rc
2, RMSECV, bias and RMSEP) ‘eyeballed’.  As an advance on this 

situation, Fearn (1996) recommended a protocol involving testing the significance of 

differences between both the RMSEP and bias of different models.  Derivative 

condition, derivative gap size and data smoothing were considered in this study with 

reference to the use of both transmission and absorbance data.  The procedure of 

Fearn (1996) was employed in this study, facilitated by a spreadsheet (see Appendix 

F) which ‘automated’ the procedure.  A significance level of 95% was used in these 

tests.   

RESULTS 

Attribute distribution 

In general, TSS content increased marginally (less than 1% TSS), albeit 

significantly, from proximal to distal ends of the fruit, and decreased from skin to core 

of the fruit (Table 1).  Variation in mean TSS, however, differed among populations.  

In Population 1, the external region TSS (8.9%) significantly exceeded that of the 

internal region (8.3%).  In Population 2, external region TSS was marginally greater 

than the internal region at the proximal end (8.4 cf. 8.3%), was not different at the 

equatorial region, and was less at the distal end (8.3 cf. 8.5%).  The maximum 

difference in mean TSS among the combinations of proximal, equatorial and distal, 

and internal and external portions in Population 2 was only 0.2% while in Population 

3, TSS at the distal end was 0.7% units greater than at the proximal end.  The 



 74

coefficient of variation for TSS (over 10 segments in a single fruit) was 1.2 and 2.1% 

in the proximal-distal and equatorial circumference orientations, respectively.   

Dry matter varied by less than 1% DM between internal and external regions 

(Population 2, Table 1).  Dry matter did not differ significantly among proximal, 

equatorial and distal positions for external tissue, while for internal tissue DM at the 

proximal position was less than the other positions and less than DM in external 

tissue.  The coefficient of variation for DM was approximately 3% in the proximal-

distal orientation, and 2% in the equatorial-circumference orientation.  Juiciness did 

not vary between proximal and distal ends (Population 3), but varied between internal 

and external regions of the fruit (Population 1).  The % DM content was not 

correlated to % juiciness (correlation coefficient of 0.02 for a combination of 5 

populations, n = 379).   
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Table 1. Spatial distribution of total soluble solids, dry matter and juiciness 
for 3 populations of mandarin fruit.  For Population 1 (3 fruit with an average of 
10 segments per fruit), each segment was cut longitudinally into external and 
internal sections.  For Population 2 (5 fruit), each segment was cut longitudinally 
into external and internal portions, and into proximal, equatorial and distal 
sections.  For Population 3 (99 fruit), each fruit was cut transversely through the 
equator of the fruit, into proximal and distal halves.  Means within a population 
and attribute not followed by a common letter are significantly different (P = 
0.05). 

 

Instrumentation and sample presentation 

For 1 population of fruit, spectra were collected using 2 optical geometries, as 

used by Walsh et al. (2000) and Greensill and Walsh (2000).  The TSS calibration 

model developed for the 45ºgeometry was not significantly better in terms of 

RMSECV than any of the 0º geometries (Table 2) and therefore the 0º geometry was 

used in all other studies reported here. 

Increasing the number of scans averaged per spectra from 1 to 32 did not 

significantly improve TSS calibration performance in terms of RMSECV when the 

fruit were positioned equatorially with a 0º optical geometry, although there was a 

trend towards improved performance (e.g. RMSECV decreased from 0.32 for 1 scan 

to 0.26 for 32 scans) (Table 2).  Calibration model performance on TSS was degraded 

Attribute

TSS (%)
External 8.9 a 8.4 a 8.4 ab 8.3 a
Internal 8.3 b 8.3 b 8.4 ab 8.5 c
Combined 9.2 a 9.9 b

Juiciness (%)
External 48.2 a
Internal 38.8 b
Combined 55 a 55.6 a

DM (%)
External 9.7 b 9.6 b 9.7 b
Internal 9.1 a 9.7 b 9.5 b

Population 1 Population 2 Population 3
prox equat distal prox distal
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if spectra were collected from the proximal end of the fruit, but were similar for 

equatorial and distal positions (Table 2).   

Table 2. The influence of scan averaging, optical geometry and fruit 
positioning on calibration statistics (coefficient of determination of calibration 
population (Rc

2); root mean square error of cross validation (RMSECV); and 
standard deviation ratio (SDR)) for total soluble solids (TSS).  A single 
population of fruit (n = 97, mean = 9.6% TSS and standard deviation = 0.77% 
TSS) was scanned with either 1, 2, 4 or 32 scans averaged per spectrum.  Letters 
following RMSECV values refer to significance testing at a 95% probability 
level, relative to the 0º 1 scan treatment.  

 

 

Spectral window selection 

The effect of spectral window on PLS calibration model performance for TSS 

and DM was optimised in terms of RMSEC using a PLS interval algorithm.  Low 

RMSEC values for both TSS and DM were obtained for a window beginning between 

703 and 850 nm, and finishing between 906 and 950 nm (Fig. 2).  The minimum 

RMSEC for TSS (0.26%) was recorded for a start wavelength of 703 nm and a finish 

wavelength of 911 nm.  The minimum RMSEC for DM (0.34%) was recorded for a 

start wavelength of 703 nm and a finish wavelength of 920 nm.  All work reported in 

this manuscript used the region 720 – 950 nm and therefore was similar to the 

observed optimal spectral window.  

Optics
Fruit 

position No. of scans R c
2

RMSECV Terms SDR

0o Equatorial 1 0.87 0.32 a 7 2.4
0o Equatorial 2 0.88 0.32 a 7 2.4
0o Equatorial 4 0.87 0.34 a 7 2.4
0o Equatorial 32 0.92 0.26 a 7 2.9

45o Equatorial 4 0.91 0.39 a 9 2
0o Proximal 4 0.68 0.63 b 5 1.2
0o Distal 4 0.88 0.30 a 6 2.6
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Figure 2. Calibration model performance as assessed by root mean square 
standard error of calibration (RMSEC) for varying spectral windows (varying 
start and end wavelengths).  Partial least squares calibration models for (a) total 
soluble solids (TSS) for populations J and K combined and (b) dry matter for 
population T.  The colour code to the RMSEC values (% TSS) is shown in the 
bar scale to the right. 
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Spectral data treatment for MPLS 

The data pre-treatment method was optimised for MPLS regression in terms of 

data type (transmission or absorbance), derivative condition (nil, first or second 

order), derivative treatment (gap size), smoothing interval and scatter correction for 

both TSS and DM.  Comparison was made on the basis of calibration statistics (Rc
2, 

RMSECV, number of terms and SDR) and prediction statistics (variance, RMSEP and 

bias).  The calibration models were used to predict TSS of an independent population 

drawn from the same harvest as the calibration group (Table 3), TSS for 5 

independent populations (Populations A, C, J, L and M; Table 4) and DM for 5 

independent populations (Populations T, S, X, W and V; Table 5).   

The highest Rc
2 and lowest RMSECV (0.95 and 0.35% TSS, respectively) for 

absorbance was recorded with a second derivative, gap size of 4 and no smoothing, 

while low RMSEP values were recorded for first derivative absorbance data with a 

small gap size (say ≤ 5) and smoothing (Table 3).  Overall however, calibration 

models developed on raw or derivative transmission or absorbance data were similar 

in calibration and validation performance (Table 3).  Calibration model performance 

on TSS was remarkably insensitive to variations in the gap size used in derivatising 

spectral data (from 3 to 30 data points, or approximately 10 to 100 nm, either side of 

the data point) (Table 3).  In this respect, second order derivatives appeared more 

sensitive than first order, with a decrease in calibration and validation performance at 

gap sizes greater that 15 data points.  Model performance was also relatively 

insensitive to smoothing interval (Table 3).   
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Table 3. The influence of derivative treatment (order of derivative), 
derivative gap size and smoothing on calibration model performance for total 
soluble solids (TSS) as assessed by coefficient of determination of calibration 
population (Rc

2), root mean square error of cross validation (RMSECV), the 
number of terms in the model and standard deviation ratio (SDR), and validated 
by root mean square error of prediction (RMSEP) and bias.  Calibration models 
were developed from Population L (n = 71, mean = 9.7% TSS, SD = 1.00% TSS) 
and validated on a subset (n = 10) of samples drawn from the original population 
prior to calibration development. No outliers were removed during calibration 
development.   

 

Data type Derivative Gap
Smoothing 

interval R c
2

RMSECV Number of terms SDR RMSEP bias

Transmissio 0 1 0.89 0.42 7 2.4 0.49 0
1 4 1 0.91 0.39 7 2.6 0.43 -0.64
2 4 1 0.86 0.43 3 2.3 0.54 0.11

Absorbance 0 1 0.86 0.44 6 2.3 0.52 0.11
1 4 1 0.88 0.43 6 2.3 0.45 0.06
2 4 1 0.88 0.41 4 2.4 0.47 0.04

Absorbance 1 3 1 0.89 0.43 6 2.3 0.47 0.08
1 4 1 0.88 0.43 6 2.3 0.45 0.06
1 5 1 0.87 0.44 6 2.3 0.44 0.08
1 7 1 0.89 0.41 7 2.4 0.45 0.05
1 9 1 0.88 0.43 7 2.3 0.49 0.02
1 10 1 0.86 0.43 6 2.3 0.45 0.11
1 15 1 0.84 0.44 7 2.3 0.49 0.14
1 20 1 0.9 0.44 9 2.3 0.5 0.04
1 30 1 0.85 0.49 8 2.1 0.48 0.15

2 3 1 0.9 0.4 4 2.2 0.57 0.09
2 4 1 0.95 0.35 7 2.5 0.53 -0.01
2 5 1 0.9 0.39 6 2.2 0.44 0.08
2 7 1 0.9 0.38 5 2.5 0.5 0.01
2 9 1 0.91 0.36 8 2.7 0.53 -0.06
2 10 1 0.92 0.37 7 2.6 0.44 0
2 15 1 0.88 0.39 8 2.5 0.47 0.05
2 20 1 0.89 0.43 8 2.2 0.53 0.25
2 30 1 0.82 0.48 6 2 0.72 0.36

1 4 1 0.88 0.43 6 2.3 0.45 0.06
1 4 2 0.87 0.42 6 2.4 0.44 0.07
1 4 3 0.89 0.42 7 2.4 0.42 0.05
1 4 4 0.86 0.43 6 2.3 0.44 0.08
1 4 5 0.88 0.43 7 2.4 0.43 0.07
1 4 6 0.88 0.41 8 2.4 0.44 0.05
1 4 10 0.87 0.42 7 2.4 0.45 0.05
1 4 20 0.91 0.42 12 2.4 0.45 0.11
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Table 4. Optimisation of data pre-treatment in terms of derivative 
treatment (none, first or second order) and 4 scatter correction routines (none, 
standard normal variance (SNV), detrend, or SNV and detrend combined) (a 
total of 12 treatments) for total soluble solids (TSS) calibration.  Model 
performance is reported in terms of prediction of 5 independent populations of 
mandarin fruit (Populations A, C, J, L and M - fruit harvested on different days 
or locations to that used in the calibration).  Calibration population statistics 
were n = 81, mean = 9.6% TSS, standard deviation (SD) = 1.03% TSS and range 
of 8.2 - 12.3% TSS. 

For each treatment prediction group within a population, the treatment with the 
lowest overall RMSEP was selected and the RMSEP presented in bold (but not 
underlined). The corresponding bias was also bolded. The lowest RMSEP within 
the other 2 derivative treatments was then selected and presented, along with the 
corresponding bias, with an underline (but not bolded). The RMSEP (or bias) in 
bold was then compared with each underlined RMSEP (or bias) in the 
population.  If the values were significantly different at a 95% probability level 
then the underlined value was bolded so that bold and underline values differed 
significantly from the lowest value. 

bias

Scatter Correction Absorb. 1st Deriv. 2nd Deriv. Absorb. 1st Deriv. 2nd Deriv.
Population A

None 0.398 0.433 0.411 0.059 -0.171 -0.031
SNV 0.386 0.409 0.357 0.092 -0.096 -0.045

Detrend 0.492 0.402 0.36 -0.176 -0.087 -0.02
 SNV & Detrend 0.424 0.385 0.332 0.082 -0.011 -0.048

Population C

None 0.762 0.888 0.77 -0.485 -0.725 -0.561
SNV 0.973 0.867 0.76 -0.638 -0.674 -0.491

Detrend 0.96 0.849 0.648 -0.728 -0.605 -0.295
SNV & Detrend 0.707 0.611 0.686 -0.432 -0.335 -0.432

Population J

None 0.605 0.799 0.628 0.346 0.651 0.432
SNV 0.999 0.754 0.505 0.856 0.611 0.226

Detrend 0.579 0.476 0.532 0.352 0.193 0.304
SNV & Detrend 0.64 0.415 0.45 0.448 0.001 0.128

Population L

None 0.635 0.693 0.66 0.477 0.505 0.468
SNV 0.695 0.607 0.752 0.543 0.434 0.581

Detrend 0.501 0.648 0.713 0.17 0.448 0.579
SNV & Detrend 0.631 0.526 0.606 0.474 0.355 0.424

Population M

None 0.655 0.732 0.498 0.413 0.503 -0.102
SNV 0.786 0.781 0.475 0.593 0.618 -0.039

Detrend 0.938 0.542 0.494 0.753 0.196 0.119
SNV & Detrend 0.688 0.462 0.5 0.54 0.007 -0.248

Variance (RMSEP)
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Table 5. Optimisation of data pre-treatment in terms of derivative 
treatment (none, first or second order) and 4 scatter correction routines (none, 
standard normal variance (SNV), detrend, or SNV and detrend combined) (a 
total of 12 treatments) for dry matter (DM) calibration.  Model performance is 
reported in terms of prediction of 5 independent populations of mandarin fruit 
(Populations T, X, S, W and V - fruit harvested on different days or locations to 
that used in the calibration).  Calibration population statistics were n = 106, 
mean = 14.7% DM, standard deviation = 1.83% DM and range of 14.7 - 19.2% 
DM.   

For each treatment prediction group within a population, the treatment with the 
lowest overall RMSEP was selected and the RMSEP presented in bold (but not 
underlined).  The corresponding bias was also bolded.  The lowest RMSEP 
within the other 2 derivative treatments was then selected and presented, along 
with the corresponding bias, with an underline (but not bolded).  The RMSEP 
(or bias) in bold was then compared with each underlined RMSEP (or bias) in 
the population.  If the values were significantly different at a 95% probability 
level then the underlined value was bolded so that bold and underline values 
differed significantly from the lowest value. 

 

The optimal mathematical treatment for the TSS model development based on 

prediction performance by comparison of RMSEP and bias involved a first derivative 

Scatter Correction Absorb. 1st Deriv. 2nd Deriv. Absorb. 1st Deriv. 2nd Deriv.
Population T

None 1.075 0.937 0.909 0.814 -0.416 0.074
SNV & Detrend 0.749 0.761 0.792 0.224 -0.188 -0.202

SNV 0.777 0.786 0.744 0.396 -0.34 -0.029
Detrend 0.958 0.889 0.766 -0.327 0.147 -0.148

Population X
None 0.842 0.693 0.681 -0.324 -0.231 -0.033

SNV & Detrend 0.675 0.614 0.642 0.208 0.042 -0.038

SNV 0.757 0.669 0.669 -0.325 -0.235 -0.054
Detrend 0.712 0.744 0.716 0.266 0.035 -0.248

Population S
None 1.057 0.885 0.918 -0.607 -0.408 -0.484

SNV & Detrend 0.806 0.805 0.904 0.038 -0.043 -0.417

SNV 0.947 0.837 0.897 -0.464 -0.153 -0.402
Detrend 0.832 0.858 0.909 -0.048 -0.31 -0.447

Population W
None 1.031 1.181 1.062 0.314 -0.411 -0.021

SNV & Detrend 0.906 1.141 0.948 0.248 0.713 0.457

SNV 0.849 0.96 0.867 0.081 0.334 0.163
Detrend 1.257 1.346 1.225 -0.217 0.697 0.683

Population V
None 5.367 4.423 4.979 5.249 4.239 4.824

SNV & Detrend 3.896 3.805 3.532 3.643 3.552 3.253

SNV 4.521 4.169 4.597 4.333 3.937 4.383
Detrend 2.982 4.393 4.102 2.681 4.229 3.921

Variance (RMSEP) bias
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absorbance treatment with standard normal variance (SNV) and detrend scatter 

correction, although there was little difference between first and second derivative 

treatments (Table 4).  There was no clear requirement for derivative or scatter 

correction for DM calibrations (Table 5).  In all further chemometric analysis reported 

in this study, unsmoothed first derivative absorbance data calculated using a gap of 4 

data points, with standard normal variance and detrend scatter correction, were used.   

The RMSEP and bias for TSS and DM (averaged for the 5 populations of Table 

4 and 5, respectively) for models using a mathematical treatment of first derivative, 

SNV and detrend was 0.48% and 0.14% TSS, and 0.77% and 0.25% DM, 

respectively.   

Multivariate regression analysis 

Calibration models, using the data treatment identified above, were developed 

for 17 populations harvested in 2001, a population each from 1999, 2000 and 2004 

and a combination of populations from 2001 (Table 6).  Generally, better calibration 

results (Rc
2 and RMSEC) for TSS were achieved using MPLS regression than 

stepwise MLR.  Modified partial least squares calibration model statistics varied 

among populations, ranging from Rc
2 = 0.41 to Rc

2 = 0.91, with RMSEC varying 

between 0.45 and 0.22% TSS (Table 6).   
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Table 6. Calibration model statistics for total soluble solids in each of 17 
populations (A to N) of mandarin fruit harvested over 2001, populations A to N 
combined and populations from 3 other years.  Calibration models were 
developed using modified partial least squares and stepwise multiple linear 
regression, with a data pre-treatment of first derivative, standard normal 
variance and detrend.   

 

n Mean SD R c
2

RMSEC No. of terms SDR RMSEC R c
2

No. of terms SDR

A 56 9.6 0.72 0.76 0.36 7 1.6 0.41 0.77 6 2.1
B 60 9.2 0.53 0.73 0.27 7 1.4 0.31 0.66 4 1.7
C 41 8.5 0.78 0.66 0.45 5 1.4 0.46 0.58 3 1.6
D 58 9 0.53 0.41 0.41 5 1.2 0.48 0.17 1 1.1
E 78 9.6 1 0.91 0.31 7 2.7 0.76 0.42 2 1.3
F 98 9.8 0.45 0.65 0.27 7 1.5 0.34 0.53 4 1.5
G 94 9.7 0.6 0.86 0.22 8 2.2 0.3 0.74 5 2
H 78 9.7 0.55 0.74 0.28 7 1.5 0.34 0.61 4 1.6
I 91 9.3 0.54 0.63 0.33 7 1.4 0.45 0.28 3 1.2
J 75 10.3 0.91 0.87 0.33 7 2.3 0.46 0.73 3 1.9
K 76 9.2 0.63 0.83 0.26 6 2 0.51 0.42 2 1.3
L 75 9.9 0.97 0.87 0.35 5 2.5 0.39 0.86 4 2.7
M 78 9 0.74 0.87 0.27 7 2.2 0.74 0 1 1
N 72 9.1 0.57 0.68 0.32 5 1.6 0.42 0.62 3 1.6
O 95 9.2 0.57 0.8 0.27 8 1.7 0.45 0.38 2 1.3
P 77 9.3 0.82 0.88 0.28 6 2.7 0.32 0.85 5 2.6
Q 89 9.5 0.66 0.84 0.27 7 2.1 0.33 0.76 4 2

A to N 770 9.4 0.87 0.84 0.35 10 2.4 0.5 0.69 9 1.8
1999 199 10.6 0.96 0.88 0.33 9 3.2 0.34 0.87 8 2.8
2000 100 8.4 1.05 0.88 0.36 9 2.9 0.38 0.87 6 2.8
2004 100 10.4 1.32 0.91 0.39 8 3.4 0.4 0.91 7 3.3

MLR calibrationPopulation Population statistics MPLS calibration
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Table 7. Prediction statistics for the validation of modified partial least 
squares (MPLS), multiple linear regression (MLR) and ‘forced’ MLR (FMLR) 
models on mandarin total soluble solids (TSS), developed on populations A to N 
combined, and A and E individually (see Table 3), on 3 independent validation 
populations (O, P and Q).  In the FMLR model, the model was restricted to using 
wavelengths of 760, 884 and 910 nm.   

 

Calibration models developed on the combined (A to N) populations and on 2 

individual populations (A and E, chosen for low RMSEC and Rc
2) were validated with 

independent populations (O, P and Q).  Modified partial least squares calibration 

models were also superior (in terms of Rv
2) to MLR calibration models in the 

prediction of TSS (Table 7) for the individual calibration populations (A and E) and 

the combined population (A to N).  Multiple linear regression model validation 

performance (Rv
2) was generally improved (Table 7) by restricting model 

development to spectral windows of relevance to sugar (‘forced’ MLR (FMLR), using 

760, 884 and 910 nm wavelengths).  Adding calibration groups together marginally 

improved MPLS and MLR model validation (Rv
2) of new populations.  No method 

was consistently better in terms of minimising the bias of the validated values.   

Validation 
populations

Regression 
analysis

R v
2 bias

A to N A E A to N A E
MPLS 0.59 0.47 0.49 0.48 0.19 0.06

O MLR 0.57 0.38 0.25 0.15 -0.17 -0.82

MPLS 0.81 0.78 0.78 0.13 -0.08 0.61
P MLR 0.71 0.29 0.26 0.67 -0.51 0.2

MPLS 0.73 0.73 0.68 0.23 0 0.76
Q MLR 0.57 0.25 0.1 0.84 -0.33 0.16

FMLR 0.6 0.55 0.64 0 0.86 0.55

0.56 1.06

FMLR 0.68 0.73 0.72 0.14 1.09 0.64

Calibration populations

FMLR 0.54 0.33 0.45 0.62
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Calibration model performance for the attributes of TSS, DM, Juiciness and TA 

Typical calibration model statistics (Rc
2and RMSEC) for TSS in a given 

population were > 0.75 and < 0.4%, respectively (Table 6), and for DM were 0.9 and 

0.6%, respectively (data not shown).  In contrast, model performance with respect to 

TA was poor, with Rc
2of 0.3, and a RMSEC of 0.2% recorded for a population of 

mean 0.67% and SD of 0.19% (data not shown).  Calibration model performance over 

5 populations (A, C, J, L and M) was also poor with respect to % juiciness (Rc
2 < 0.2, 

RMSEC > 5.0%, for population means ranging from 47 to 52% and SD from 4 to 

9%). 

Typical MPLS model b coefficients (regression coefficients for the model) for 

TSS and DM models are illustrated in Fig. 3.  Stepwise MLR coefficients for models 

developed on the same data were based on 860, 870 and 900 nm wavelengths for TSS, 

and 907, 890, and 780 nm wavelengths for DM.   
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Figure 3. Modified partial least squares calibration b (regression) 
coefficients for (a) total soluble solids (TSS) and (b) dry matter (DM) models 
using second derivative of absorbance with a gap size of 4 points.  Model 
coefficients for populations E, G, L, and P are shown for TSS, and those for 
populations R, S, T and X are shown for DM.   
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DISCUSSION 

Sample orientation 

The distribution and level of attributes, such as TSS, within a fruit may differ 

with maturation of the fruit, growing conditions of the fruit (e.g. position within the 

canopy), and/or size of the fruit.  The TSS, juiciness and DM tended to be higher in 

external (relative to internal) and in distal (relative to proximal) tissue (Table 1).  

However, the absolute variation in any attribute level with reference to position within 

the fruit was low (maximum difference of 0.7% TSS and 0.6% DM).  There was less 

variation at the equatorial than proximal or distal positions.  The coefficient of 

variation (CV) for TSS around the equator of the fruit (outer tissue) was 2.1%, similar 

to that of 1.8% reported by Peiris et al. (1999b) for a single orange and grapefruit.  

However, Peiris et al. (1999b) reported greater CV values for proximal to distal 

variation (10.2% for orange and 12.4% for grapefruit (single fruit in each case)) than 

we noted for mandarin (2.1%).  Mandarin fruit are apparently more homogenous than 

oranges or grapefruit.  

Calibration model performance was poorer when based on spectra acquired 

from the proximal end compared with the equatorial and distal ends of the fruit (Table 

2).  This result is not surprising, given the variation in proximal end morphology 

(variable pedicel removal).   

Given the above consideration of attribute distribution and spectral acquisition, 

it is recommended that optical and reference sampling should occur at any position 

around the equator of the fruit in order to best represent the entire fruit.   
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Spectroscopy 

The short wave NIR spectra of attributes that contribute to TSS (predominantly 

sucrose, but also glucose, fructose, organic acids, pectins, etc.) and DM (e.g. soluble 

sugars, starch, cellulose, lignin, proteins, lipids, and, by negative correlation, water) 

relate to second and third overtones of OH and CH stretching, and related 

combination bands.  These bands are characteristically broad and overlap, and thus 

spectra are ‘featureless’.  For example, the chemical environment of each OH and CH 

bond in water and sugar molecules is different, so that the effective absorption bands 

are wide.  Derivative spectroscopy is used to tease out differences from such spectra, 

and multivariate calibration is used to tease out relationships between the spectra and 

the attribute of interest.   

Spectral features relevant to sugar and water in the 700 to 950 nm spectral 

region include the second and third overtones of OH stretching vibrations at around 

960 and 760 nm, respectively, and the first and second overtone of OH combination 

bands at around 840 and 1,180 nm, respectively (Golic et al. 2003).  Spectral features 

relevant to sugar CH groups include second order stretching bands between 1,100 and 

1,200 nm, and a third overtone band around 910 nm.  Miyamoto and Kitano (1995) 

found the key wavelengths for a MLR calibration model on mandarin fruit TSS to be 

770 and 905 nm for intact and peeled fruits respectively.  These authors considered 

absorption at 770 and 905 nm to be associated with the fourth overtone of CH2 and 

the third overtone of CH and CH2, respectively, while absorption at 840 to 855 nm 

was related to fruit diameter (at a constant temperature). 

The use of the 760, 884 and 910 nm wavelengths in the FMLR TSS models was 

therefore an attempt to use wavelengths related to 2 overtones of OH stretching and 

the third overtone of CH stretching.  Using the WINISI stepwise MLR, models 
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generally defaulted to 4 to 9 wavelengths, including wavelengths close to 900, 870 

and 860 nm for TSS and 907, 890, and 780 nm for DM.   

McGlone et al. (2003) noted that “vast numbers of different spectral windows 

can be created over the wavelength range and all possible options could not be 

investigated in any reasonable time”.  These authors limited their investigation to 7 

spectral windows chosen on the basis of “prior experience and intuition”, concluding 

that a wavelength range of 750 to 1,100 nm was optimal for interactance spectra.  In 

the current study all combinations of start and end wavelengths were considered for 

the development of a PLS model.  Calibration model performance was relatively 

stable across the broad spectral window of 703 to 950 nm for both TSS and DM 

(Fig. 2).   

Calibrations for TSS based on second derivative absorbance contained points of 

inflection for the calibration b coefficients at around 760, 860 and 905 nm, while for 

DM points of inflection were around 760, 810, 850 and 910 nm (Fig. 3).  However, 

the plots are disconcertingly difficult to interpret in terms of spectroscopic relevance, 

in contrast to the experience of Golic et al. (2003) who worked in the same (short 

wave NIR) wavelength region but with model sugar-water solutions.  The high 

weighting of features not directly related to the attribute of use should make the 

calibration less robust for an independent validation population.  In practice however, 

the MPLS calibrations were more robust than the MLR or FMLR calibrations where 

specific wavelengths are selected.  Presumably overlap between bands allows 

shoulder regions to hold more useful information than regions of the absorption peaks.  

We conclude that use of the whole wavelength region, 720 – 950 nm, is warranted for 

development of both TSS and DM models.  This includes the spectral region 

associated with the second overtone CH stretch of sugar (910 nm).   
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Organic acids (titratable acidity) are present in intact fruit at relatively low 

levels (ca. 1.0%).  As such, detection using NIRS is unlikely and we agree with the 

assessment of McGlone et al. (2003) that previous reports of calibration on this 

attribute are likely to represent secondary correlations on attributes related to fruit 

maturity.   

Another quality defect for mandarins is apparent dryness, commonly assessed 

by % juiciness of fruit.  This characteristic was not modelled successfully with NIR 

spectral data (correlation coefficient < 0.01, data not shown).  This result is consistent 

with observation that the dryness defect does not correlate with water content (DM).  

Presumably, some of the water is present in the fruit in a bound (gelled) form.  This 

result is in contrast to that of Peiris et al. (1998) but the ‘section dryness’ defect 

considered by Peiris may well have been a different type of defect (e.g. frost damage, 

in which juice sacs dehydrate following damage).   

Spectral collection  

The calibration results for the 0º (interactance) and 45º (transmittance) 

geometries (e.g. Rc
2 of 0.91, RMSECV of 0.4% TSS) were not significantly different.  

The 0º (interactance) geometry was expected to produce a poorer calibration model 

than the 45º (transmittance) geometry due to increased detection of specularly 

reflected radiation and/or the shorter path length of light through the fruit in the 0º 

geometry (as reported by McGlone et al. (2003)).  In practice, the degradation in 

performance was marginal (not significant in terms of RMSECV), indicating that little 

specular light was detected and that a representative volume of the fruit was optically 

sampled using the 0º geometry. 
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The 45º geometry was applied with the detector probe in contact with the fruit 

to exclude specular reflection.  The 0º geometry was applied without physical contact 

between the detector probe and the fruit, in contrast to the application of McGlone et 

al. (2003).  The shadow cast by the detector probe in the 0º geometry minimises 

detection of specular light relative to reflectance spectroscopy.  The separation of 

probe and fruit allows for rapid in-line sorting, outweighing any disadvantage in terms 

of a marginally poorer calibration performance due to increased detection of 

specularly reflected radiation or a shorter path length of light through the fruit.  This 

conclusion is similar to that of Greensill and Walsh (2000).   

Most literature reports employ averaging of multiple scans (e.g. Guthrie and 

Walsh (1997)).  Increasing the number of scans should improve signal to noise by the 

square root of the number of scans averaged.  In practice the increase in calibration 

model performance with 32 scans, compared with 1, 2 or 4 scans, was minimal (no 

significant differences among RMSECV values).  On a commercial pack-line, 

operating at a belt speed of 1 m.s-1, there is sufficient time for only 1 scan. 

We recommend the use of the 0º geometry with a single scan per spectrum as 

appropriate for use with mandarin fruit. 

Calibration data treatment 

Models in which the coefficients more highly weight spectroscopically 

significant wavelengths (i.e. wavelengths related to the band assignments associated 

with the analyte of interest) should perform better in terms of validation on 

independent populations (i.e. there should be less risk of over-fitting the model).  

Multiple linear regression models were developed in which the regression was based 

on 4 to 6 wavelengths anywhere in the 720 – 950 nm region, and in which the 



 92

regression was ‘forced’ to use data between 860 – 890 nm and 900 – 933 nm, 

wavelengths relevant to sucrose band assignments.  The ‘forced’ MLR models were 

generally better in validation than MLR models, but not MPLS models (Table 7).  

This result was not related to outlier detection and removal routines as no outlier 

removal was undertaken in these validation exercises.  Thus, while there is a greater 

potential to overfit MPLS than MLR models, this did not occur, as, in general, MPLS 

models were better than MLR models in both calibration development and validation 

on independent populations (Tables 6 and 7).  We therefore recommend use of the 

MPLS procedure in preference to MLR.  

Calibration model performance was relatively insensitive to the ‘gap’ size of 

derivation.  This result is consistent with the wavelength resolution of the Zeiss 

MMS1 (peak width at half maximum for a line light source of 13 nm, Walsh et al. 

(2000)) and the relatively broad absorption bands for sugar and water occurring in the 

short wavelength near infra-red region.   

For TSS, the optimal derivative and scatter correction condition differed among 

validation populations (Table 3) but, in general, a first derivative with SNV and 

detrend routines supported superior model performance.  This is consistent with an 

optical geometry that involves some reflectance (thus sensitive to changes in the 

sample surface).  For DM, no method was consistently superior to other methods.  

Hence, the use of first derivative (gap size of 4 data points), SNV and detrend 

procedures are considered appropriate mathematical treatments for calibration model 

development for mandarin fruit.   
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CONCLUSIONS 

In this exercise we have attempted to rationalise the NIR calibration procedure 

for determination of TSS and DM in intact mandarin.  The recommended procedure 

involved sampling of an equatorial position on the fruit using either 0° interactance or 

45° partial transmittance optics using 1 scan per spectrum, with partial least squares 

model development on a 720 to 950 nm window, pre-treated as first derivative 

absorbance data (gap size of 4 data points) with standard normal variance and detrend 

scatter correction.  A lack of robustness is obvious, however, in terms of the ability of 

the models to predict attribute levels in new populations.  In a companion manuscript 

we consider sources of variation between populations and calibration model updating 

procedures.   
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4 
CALIBRATION MODEL ROBUSTNESS 

FOR MANDARIN FRUIT INTERNAL QUALITY 
ATTRIBUTES 3 

ABSTRACT 

The robustness of multivariate calibration models, based on near infra-red 

spectroscopy, for the assessment of total soluble solids (TSS) and dry matter (DM) of 

intact mandarin fruit (Citrus reticulata var. ‘Imperial’) was assessed.  Total soluble 

solids calibration model performance was validated in terms of prediction of 

populations of fruit not in the original population (different harvest days from a single 

tree, different harvest localities, different harvest seasons).  Of these, calibration 

performance was most affected by validation across seasons (signal to noise statistic 

on root mean square error of prediction of 3.8, compared with 20 and 13 for locality 

and harvest day, respectively).  Procedures for sample selection from the validation 

population for addition to the calibration population (‘model updating’) were 

considered for both TSS and DM models.  Random selection from the validation 

                                                 

3 This chapter has been accepted for publication in the Australian Journal of Agricultural Research, 
2005, 56, 417-426 under the title: ‘Assessment of internal quality attributes of mandarin fruit. 2. NIR 
calibration model robustness’.  Aspects of this work were published in: Proceedings of the 10th 
International Conference on Near Infrared Spectroscopy, Kyonjgu, Korea, (Editors AMC Davies and 
RK Cho) 2001, under the title, ‘Assessing and enhancing near infrared calibration robustness for 
soluble solids content in mandarin fruit’.  Authors were John A. Guthrie and Kerry B. Walsh 
(Appendix E). 
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group worked as well as more sophisticated selection procedures, with approximately 

20 samples required.  Models that were developed using samples at a range of 

temperatures were robust in validation for TSS and DM.   

INTRODUCTION 

In a companion manuscript (Guthrie et al. 2005a) the reference sampling 

procedure and data pre-processing techniques were optimised for the development of 

partial least squares (PLS) calibration models on intact mandarin fruit for total soluble 

solids (TSS) and dry matter (DM), using short wavelength (720 – 950 nm) near infra-

red (Yermiyahu et al. 1997) spectra acquired in an interactance mode (Greensill and 

Walsh 2000).  Chemometric descriptive terms were also defined and will be used in 

the current manuscript.  

The performance of a NIR calibration model in terms of predictive ability is 

impacted by a range of factors, including instrumentation changes, sample 

temperature and changes in sample (fruit) size and chemistry.   

The application of near infra-red spectroscopy (NIRS) to a given fruit 

commodity requires an assessment of the robustness of the calibration model across 

populations of fruit grown under differing conditions.  Different growing conditions 

may result in differences in physical (e.g. trichome density, intercellular space 

content) and chemical (e.g. water content) properties of a fruit, resulting in altered 

fruit optical properties and band assignments.  Unfortunately, the majority of reports 

on the application of NIRS to fruit sorting detail the use of a single harvest 

population, divided into a calibration population and a validation population.  For 

example, McGlone et al. (2003) acquired data on mandarins from 3 orchards at 

approximately weekly intervals over 7 weeks, resulting in 20 data populations for 
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subsequent analysis.  A calibration population was assembled from 75% of each 

population and used to predict a population consisting of the remaining samples from 

each of the populations.  This procedure allowed an estimate of prediction error, 

however it did not involve testing the calibration against fruit from independent 

populations (e.g. different harvest dates or localities).  We are aware of only 3 

relevant reports involving the use of separate harvest populations of fruit for 

calibration and validation.  These studies involved mandarin and peach fruit.  

Ou et al. (1997) reported the use of a calibration developed in 1 fruit growing 

region to predict TSS of Ponkan mandarin fruit from that region and from 2 other 

regions, with Rv
2 of 0.72, 0.44 and 0.30, and RMSEP of 0.68, 1.16 and 1.28% TSS, 

respectively.  A calibration based on data combined across regions performed better, 

with Rv
2 of 0.76 and RMSEP of 0.92% TSS.  Miyamoto and Kitano (1995) reported 

the use of a calibration developed in 1 year to predict TSS content of intact Satsuma 

mandarins in the subsequent 2 seasons.  Prediction statistics were similar to that for 

calibrations developed within a given season (RMSEP of < 0.6% TSS and bias of 

≤ 0.4% TSS).   

Miyamoto and Kitano (1995) also reported calibration validation across 3 

seasons for peach.  Prediction statistics for a calibration developed across data from 

all years (RMSEP of 0.60% TSS, bias of < 0.1% TSS) were better than for a 

calibration developed in any 1 year (RMSEP of 0.64% TSS, bias up to 0.34% TSS). 

Also using peaches, Peiris et al. (1998b) reported that a calibration developed on a 

population drawn from 3 seasons predicted better on a combined season validation 

population (RMSEP of 0.9 – 1.3% TSS and bias of 0.2 – 0.4% TSS) than that 

developed from populations drawn from a single season (RMSEP of 0.90 – 1.4% TSS 

and bias of 0.2 – 2.1% TSS). 
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The comparisons of model validation between independent populations are 

usually difficult as population attributes (e.g. SD) vary.  The standard deviation ratio 

(SDR), expressed as the ratio of SD to RMSECV (for calibration data populations) or 

RMSEP (for validation data populations), or RPD (ratio of the SD to RMSECV(C) or 

RMSEP(C) of the data) (Williams and Sobering 1993), is sometimes presented as a 

gauge of the utility of the technique.  Other indices have also been used.  Ou et al. 

(1997) reported a form of the coefficient of variation (CV) statistic 

(CV = RMSEP/mean of the prediction population), while Miyamoto and Kitano 

(1995) reported an evaluation index (EI =  2 * RMSEP/range * 100), in an attempt to 

compare model performance across populations.  Another approach, suggested by 

Wortel et al. (2001), is based on the Taguchi concept of process control, in which the 

variation of RMSEP among validation populations of a given condition (e.g. 

populations drawn from different harvest regions) is quantified in a signal to noise 

(S/N) statistic (S/N = 20 * log10 [mean RMSEP/SDRMSEP], where mean RMSEP is the 

average of the RMSEP across all validation populations, and SDRMSEP is the SD of all 

the RMSEP values).   

In other industries (e.g. cereal, oilseed) NIRS based models are extended by 

inclusion of samples from the validation population (e.g. from a new variety of wheat 

or a new season of oilseed production).  The decision on when to add new samples to 

the calibration population is generally based on an assessment of the dissimilarity of 

the calibration and validation populations based on principal component analysis 

(PCA) or partial least squares analysis (PLS) scores.  The Mahalanobis distance D, 

(Mahalanobis 1936) is such a measure.  The chemometric software package WINISI 

(ver. 1.04a) uses mean centred score data in the calculation of D. Further, D is 

normalised to ƒ to create the global H (GH) statistic, as follows:  
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GH  = 
2D

f
 

where ƒ is the number of PCA/PLS factors in the model.   

Shenk and Westerhaus (1991) advocate the use of the GH value and a ‘nearest 

neighbour’ Mahalanobis distance (NH, Mahalanobis distance from any given sample 

to its nearest neighbour in principle component space) for the selection of outliers and 

for sample addition.  However, the choice of how many and which samples from the 

validation population should be added to the calibration population is vexatious.  

Typically high leverage samples, which are not outliers, will be chosen, with the 

number required defined through trial and error (e.g. Wang et al. 1991).   

Calibration model performance is affected by sample temperature primarily 

through the strong effect of temperature on H bonding and thus on the absorption 

bands related to OH (Golic et al. 2003).  Model robustness should therefore be 

considered with respect to this variable.  We hypothesize that calibration models for 

DM would be more sensitive to temperature than models for TSS, as DM models may 

reflect water content.   

Kawano et al. (1995) noted that as sample fruit (peach) temperature increased, 

so did absorption at 841 and 966 nm (water bands), resulting in a bias in the 

prediction of TSS.  Miyamoto and Kitano (1995) noted that when a calibration 

developed from spectra collected from mandarin fruit at 20°C was used to predict the 

same fruit at 6, 15 and 25°C, RMSEP (presumably RMSEP(C)) was constant but bias 

increased linearly with temperature.  These researchers developed MLR models using 

3 wavelength regions, noting 900 - 910 nm to be directly relevant to sugar, 740 –

 755 nm or 840 - 855 nm to compensate for the optical path-length of the fruit, and 

794 or 835 nm to compensate for the influence of fruit temperature.  Both reports 
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concluded that if the calibration model was developed with sample temperatures 

covering the range of future sample temperatures, then prediction accuracy was high.  

Sanchez et al. (2003) also noted that the influence of spectrometer and fruit (apple) 

temperature was mainly on bias, not RMSEP(C).  However the effect of spectrometer 

temperature on bias was more than twice that of fruit temperature.  

The ‘repeatability’ file option of WINISI (ver. 1.04a) software may represent an 

alternative procedure for developing robustness in the model with respect to sample 

temperature.  This procedure was developed for the calibration transfer between 

instruments, and depends on the collection of spectra of a few samples on different 

instruments.  However, rather than add spectra directly to the calibration, the 

‘repeatability’ file adds ‘difference’ spectra (for each sample, scanned under different 

temperatures), with corresponding reference values of zero (Shenk and Westerhaus 

1991).  The calibration algorithm is modified to give extra weight to these spectra. 

In the current study we report on the robustness of NIRS models for the 

evaluation of attributes related to eating quality (% TSS, % DM) of intact mandarin, 

and on procedures to select samples for addition to the calibration population.  

Calibration robustness across harvest time, location and seasons for prediction of TSS, 

employing the assessment methodology suggested by Wortel et al. (2001), is 

considered.  Calibration robustness for prediction of TSS and DM is also considered 

with respect to sample temperature.  Calibration performance across instruments (e.g. 

as reported for Imperial mandarins by Greensill and Walsh (2002)) will not be 

considered here. 
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MATERIALS AND METHODS 

Plant material, reference analyses and spectroscopy 

Mandarin fruit (Imperial variety) were sourced following commercial harvest 

from orchards in Mundubbera (25.6º S, 151.6º E), Bundaberg (24.9º S, 152.3º E) and 

Dululu (23.8º S, 150.3º E), Queensland.   

Populations used in this study are the same as those used in the companion 

study for the 2001 season, with populations alphabetically named in chronological 

order as described in Guthrie et al. (2005a).  Additional populations from the 1999 

and 2000 seasons were used in Fig. 1.   
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Figure 1. Prediction statistics (root mean square error of prediction 
(RMSEP) and bias) for a modified partial least squares (MPLS) calibration 
model for mandarin fruit total soluble solids (TSS), using 4 methods for sample 
selection from the prediction population for addition to the calibration 
population (combined population from years 1999 and 2000 (n = 307, mean of 9.8 
and SD of 1.42% TSS).  The independent validation population from year 2000 
(n = mean of 14.2 and SD of 1.05% TSS) was divided into 2 equal parts, with 1 
part used for validation and the other part used for sample addition. The 4 
methods were (a) every ‘ith’ sample based on ranking by Mahalanobis Global H 
statistic (GH), closed triangle; (b) samples with greatest GH less than 3, open 
circle; (c) samples chosen randomly, closed circle; and (d) samples with the 
greatest Mahalanobis Neighbourhood H statistic (NH), open triangle. 
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Model robustness across harvest day, location and season was evaluated for TSS 

using populations gathered from a single tree over 2 weeks, from 3 different locations 

and from 4 seasons (from different locations) (Table1).  For TSS, the calibration 

population was a combined J and K with validation populations of M, E, G and L.  

For DM, the calibration population was T with validation populations of V, R and S.  

Additionally, a model developed on a combined population made up of 2 populations 

per year from years 1999 and 2000 (n = 307, mean 9.9 and SD of 1.44% TSS) was 

used to predict on a separate population from year 2000 (mean 14.2 and SD 1.05% 

TSS).   

Total soluble solids content of extracted juice and DM of fruit halves was 

determined as described in Guthrie et al. (2005a) and Chapter 3.  The procedures used 

to acquire spectra, were also described in Guthrie et al. (2005a).  Briefly, spectra were 

collected over the wavelength range 720 – 950 nm using a NIR enhanced Zeiss 

MMS1 spectrometer and a 100 Watt tungsten halogen light in the interactance optical 

configuration reported by Greensill and Walsh (2000) (0o angle between illumination 

and detected light rays, with detection probe viewing a shadow cast by the probe onto 

the fruit).   
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Table 1. Calibration (Cal) and validation (Val) statistics for modified 
partial least squares (MPLS) and multiple linear regression (MLR) calibration 
models on mandarin total soluble solids (TSS), with validation across several 
populations varying in (a) time (Crisosto et al. 2000) of harvest, (b) harvest 
location, and (c) season of harvest.  Wavelength range was from 720 to 950 nm.  
Variation in prediction performance is reported in terms of the Taguchi signal to 
noise (S/N) value, root mean square error of prediction (RMSEP) and average 
RMSEP.  Population identifiers (letters in brackets) refer to Table 6 in the 
companion manuscript (Guthrie et al. 2005a). 

 

Fruit SD MPLS MLR
bias bias

(% TSS) (% TSS)
Time
Cal (J - K) 
(Day1 & 3)

0.92 0.9 0.332 0.86 0.36

Val
Day 5 (L) 1.04 0.86 0.406 0.06 0.79 0.54 -0.07
Day 7 (M) 0.74 0.56 0.533 -0.13 0.64 0.48 0.03
Day 9 (N) 0.68 0.56 0.478 0.11 0.49 0.56 0.02
Day 10 (P) 0.84 0.84 0.512 0.39 0.8 0.95 0.85
Day 13 (Q) 0.67 0.68 0.509 0.33 0.63 0.87 0.75
S/N 
RMSEP

19.8 10.1

Av RMSEP 0.49 0.68

Location
Cal (J-K) 0.92 0.9 0.332 0.86 0.36
Val
A (E) 0.99 0.75 0.589 0.31 0.6 0.79 0.39
B (F) 0.49 0.35 0.806 0.66 0.14 1.24 1.09
C (G) 0.6 0.53 0.951 0.85 0.3 1.31 1.15
S/N 
RMSEP

12.7 12

Av RMSEP 0.78 1.12

Seasons
Cal (1999) 0.92 0.93 0.273 0.87 0.34
Val
Year 1 
(1999)

1.05 0.35 4.944 3.21 0.32 3.7 1.51

Year 2 
(2000)

1.05 0.83 2.099 2.05 0.78 2.13 2.07

Year 3 
(2001)

0.78 0.03 6.756 -3.58 0.02 4.74 -0.35

Year 4 
(2004)

1.32 0.74 0.77 -0.31 0.21 2.74 1.95

S/N 
RMSEP

3.82 1.5

Av RMSEP 3.64 3.33

R c
2 RMSEP(C) 

(% TSS)
Population

 
(% TSS) R c

2 RMSECV/
RMSEP 
(% TSS)
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Chemometrics 

The software package WINISI (ver. 1.04a) was used for chemometric analysis.  

Calibrations were developed using both step-wise multiple linear regression (MLR) 

and modified partial least squares regression (MPLS).  The data pre-treatment options 

of first derivative, standard normal variance and detrend scatter correction, as 

recommended in the companion study (Guthrie et al. 2005a), were adopted 

throughout the current study.  The ‘repeatability’ file option in WINISI was also 

considered as a method to improve prediction statistics across the different sample 

temperatures.   

The criteria of Wortel et al. (2001) were applied to evaluate model robustness.  

This approach involved calculation of an average RMSEP and the S/N statistic for the 

performance of a given model across a range of validation populations.   

A common approach for the improvement of calibration performance on a new 

validation population involves the addition of samples from the validation population 

to the calibration population.  In this study, we extend the treatments reported by 

Guthrie and Walsh (2001).  Each validation population was initially assessed for 

outliers as samples with a GH > 3.0 using its own scores and loadings.  These outliers 

were removed and the resulting data divided randomly into 2 groups - 1 group (2 

thirds) retained as the validation population and the other group used for selection of 

samples for addition to the calibration population.   

Three approaches were used in the selection of samples from the validation 

population for addition to the calibration population;  

• random - done twice using 2 different seeds to the random number 

generator;  
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• selected on GH value, selecting samples with either (a) minimal GH (i.e. 

spectrally similar to the ‘mean’ of the calibration population), (b) maximal GH 

(i.e. spectrally dissimilar to the ‘mean’ of the calibration population), or (c) 

spaced evenly on GH ranking (i.e. representative of the ‘spread’ of the 

calibration population);   

• selection on the basis of NH using 2 methods - (a) NH cut-off (in which 

only samples with a NH value greater than the ‘cut-off’ value are chosen; this 

procedure is available as a WINISI software option, under ‘Make and Use 

Scores’, ‘Select Samples From a Spectra File’), and (b) NH end (a manual 

implementation of (a), in which all samples were ranked manually in ascending 

order of magnitude for NH, with high NH value samples chosen); 

Thus in total 6 methods for sample selection were trialled.  In these exercises, 

the GH and NH values were calculated for validation population members, using the 

scores and loadings of the calibration population.  All validation populations were 

independent of the calibration populations. 

Different population updating techniques were compared, as were different 

numbers of samples for model updating.  This was trialled on different calibration and 

validation populations for the attributes of both TSS and DM (Figs. 1 to 5).   
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Figure 2. Prediction statistics (root mean square error of prediction 
(RMSEP) and bias) for a modified partial least squares (MPLS) calibration 
model (Populations J and K) for mandarin fruit total soluble solids (TSS), using 
6 methods for sample selection from the prediction population for addition to the 
calibration population. The independent validation population (Population M) 
was divided into 2 parts, with 2 thirds used for validation and the remainder 
used for sample addition. The validation population (sub-set of population M) 
was totally independent of the calibration population (population J and K).  The 
6 methods were (a) samples with minimum GH values, closed circle, (b) every 
‘ith’ sample based on ranking by Mahalanobis Global H statistic (GH), open 
circle; (c) samples with greatest GH less than 3, closed triangle, (d) samples 
chosen randomly, open triangle and closed square; (e) samples selected using 
WINISI sample addition facility, open square; and (f) samples with the greatest 
NH, closed diamond.
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Figure 3. Prediction statistics (root mean square error of prediction 
(RMSEP) and bias) for modified partial least squares (MPLS) prediction models 
for dry matter (DM) of mandarin fruit, using 3 methods for sample selection 
from the prediction population for addition to the calibration population.  The 
independent validation population was divided into 2 parts, 2 thirds used for 
validation and the remainder used for sample addition. The validation 
population (sub-set of population V) was totally independent of the calibration 
set (population T).  The 3 methods were (a) samples with every ‘ith’ sample based 
on ranking by Mahalanobis Global H statistic (GH), closed circle, (b) samples 
with greatest GH less than 3, open circle, (c) samples chosen randomly, closed 
triangle.  The average GH of samples in the validation population was calculated 
using calibration model scores.   
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Figure 4. Prediction statistics (root mean square error of prediction 
(RMSEP) and bias) for modified partial least square (MPLS) prediction models 
for total soluble solids (TSS) of mandarin fruit, using 3 independent (of 
calibration populations) validation populations (Populations E, closed circle; G, 
open circle; and L, closed triangle).  The average Mahalanobis Global H statistic 
(GH) of samples in the validation population was calculated using calibration 
model scores.  The initial calibration population consisted of populations J and K 
(as for Fig. 2).  Samples were selected randomly from the prediction populations 
for addition to the calibration population.   
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Figure 5. Prediction statistics (root mean square error of prediction 
(RMSEP) and bias) for modified partial least squares (MPLS) prediction models 
for dry matter (DM) of mandarin fruit, using 3 independent (of calibration 
populations) validation populations (V, closed circle; R, open circle; and S, 
closed triangle).  The average Mahalanobis Global H statistic (GH) of samples in 
the validation population was calculated using calibration model scores.  
Samples were selected randomly from the prediction populations for addition to 
the calibration population.  The initial calibration population was population T. 

 

For 1 population of mandarin fruit (population T), spectra were collected of fruit 

at room temperature (22°C) and then the fruit equilibrated to 10°C and 30°C and 

rescanned.  These fruit were assessed (separate halves) for both TSS and DM.  

Calibration models were developed on a population of 70 samples (mean 9.6% and 
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SD 1.51% for TSS, and mean 14.7% and SD 1.66% for DM), from spectra collected 

of these fruit at 10, 22 and 30°C.  The prediction populations were based on a separate 

population of 34 samples (mean 9.8%, SD 1.64% for TSS and mean 14.7%, SD 

2.03% for DM), again with spectra collected of these fruit at 10, 22 and 30°C.  The 

calibration models for TSS involved 5 terms, while those for DM involved 6 or 7 

terms.  Calibration models were developed on spectra of fruit at 10, 22, 30, 10 and 

22°C, and all 3 temperatures.  The WINISI ‘repeatability file’ option was also 

employed, using all samples or the 4 samples with lowest GH values from the 22°C 

validation population.  The significance (P < 0.05) of differences in RMSEP and bias 

was tested as described by Fearn (1996), using an automated spreadsheet (Guthrie et 

al. 2005) (see Appendix F). 

RESULTS  

Calibration model robustness 

A given TSS calibration model was used to predict populations over harvest 

day, location and season (Table 1).  The model used to predict populations over 

harvest day and location was based on the combination of 2 populations (J and K), 

while the model for predicting populations over seasons (years) was based on 

populations from 1999.  Model predictions were more variable across seasons than 

across harvest days or location (in terms of both RMSEP and bias).  This prediction 

variability was indexed as an average RMSEP and a S/N on RMSEP following the 

procedure of Wortel et al. (2001).  The S/N ratio on the RMSEP of the MPLS model 

predictions was 20 over harvest days, 13 over location, and 4 over seasons (Table 1).  

Modified partial least squares models were more robust than MLR models (MLR 
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models had lower S/N ratios, being 10, 12 and 2 for harvest days, locations and 

seasons, respectively). 

Model performance in prediction of TSS of an independent population was 

improved by inclusion of samples from the independent population, regardless of the 

method used to select the samples for inclusion (Figs. 1 and 2).  This was 

demonstrated for a calibration developed on populations from 1999 and 2000 (Fig. 1), 

and from 2001 (Fig. 2).  Of the 4 methods of sample selection employed (random, 

every ‘ith’ sample based on ranking by GH, maximum GH, and maximum NH), all 

behaved similarly (Fig. 1).  Model performance improved from 1.1% TSS to 0.45% 

TSS for RMSEP and from 1.1% TSS to 0.15% TSS for bias with the inclusion of only 

10 samples (Fig. 1).  In the second exercise, where 6 methods of selection were used 

(as above plus minimum GH and WINISI sample addition facility), all methods again 

behaved similarly in terms of bias (Fig. 2).  In terms of RMSEP, all methods behaved 

similarly with addition of up to 5 samples, but there was some divergence between 

methods with addition of 10 to 20 samples.  The RMSEP values increased with the 

addition of 10 samples for the ‘random’ and ‘greatest GH’ (approaches 1 and 2, 

respectively) and for the addition of 10 and 20 samples for the WINISI ‘sample 

addition facility’ (approach 3).  However, a repeat of the ‘random’ selection approach 

gave divergent results for the addition of 10 samples.  Of course, with the addition of 

all samples from the 1 third validation population all results will converge (except for 

where there is a slight difference in the size of the population, (e.g. 30 drawn from a 

population of 31 or 34). 

Model performance (from calibration on Population T) in prediction of DM of 

an independent population (Population V) was also improved (in terms of both 

RMSEP and bias) by inclusion of samples from the independent population, 
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regardless of the method used to select the samples for inclusion (Fig. 3).  Of the 3 

methods of sample selection employed (random, every ‘ith’ sample based on ranking 

by GH and maximum GH), all behaved similarly, reaching a stable value after the 

addition of 10 samples.   

The effect of sample addition (using the random selection method) on the 

performance of a TSS model (as used for Fig. 2; based on Populations J and K) was 

described for a further 3 independent validation populations (Populations E, G and L).  

A similar activity was undertaken for DM (calibration Population T and validation 

Populations V, R and S).  The GH of the validation population was calculated using 

scores and loadings of the calibration population, with recalculation after each sample 

addition.  Where the average GH of the validation population was markedly different 

from the calibration population (e.g. average GH > 3), the improvement in validation 

was quite dramatic (e.g. RMSEP decreasing from 1.45 to < 0.60% TSS with the 

addition of only 5 samples).  When the average GH of the validation population was 

similar to the calibration population (i.e. GH < 3), the validation performance, while 

initially acceptable, showed little improvement (e.g. RMSEP changed from 0.50 to 

0.42% TSS with addition of 5 samples for a population with an initial average GH of 

2) (Figs. 3 and 4).   

Sample temperature 

Model statistics (RMSEP) for TSS prediction were not significantly different 

for calibration models developed using spectra of fruit at either 10 or 22°C, but that 

for 30°C was inferior to that at 22°C (Table 2).  For calibrations developed on DM for 

these 3 fruit temperatures, calibration model RMSEP was not significantly different 

for models developed at either 10 or 22°C, but a significantly lower RMSEP was 
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achieved at 30°C, compared to that at 22°C (Table 2).  Relative to models developed 

using fruit at several temperatures, a model (TSS or DM) developed at a single 

temperature (22°C) produced an inferior result (in terms of bias rather than 

RMSEP(C)) when fruit temperatures were other than that of the calibration 

population.  For both the attribute of TSS and DM, bias was related to fruit 

temperature (R2 = 0.96, slope = –0.10% TSS/°C (R2 = 0.86, slope = -0.10% DM/°C).   

Incorporating samples with different temperatures in the calibration population 

improved the prediction performance of both the TSS and DM models, in prediction 

of samples within the temperature range included in the calibration population (Table 

2). For example, bias was -1.17, -0.15, and 0.07 for TSS models developed at sample 

temperatures of 22°C only, 10 and 22°C, and 10, 22 and 30°C, respectively, for 

prediction of a population of samples at 30°C.   

The 4 samples with the lowest GH value from the calibration population 

scanned at 22°C were identified.  The spectra of these samples at all 3 temperatures 

were included in the ‘repeatability’ file of WINISI.  In a second exercise, all samples 

(from across all temperatures) were used in the ‘repeatability’ file.  Including spectra 

of fruit scanned at different temperatures in the ‘repeatability file’ did not improve 

calibration model statistics (for either DM or TSS), or model prediction statistics for 

DM, relative to a model using fruit re-scanned at all temperatures (Table 2).  In 

contrast, the ‘repeatability’ file option supported better prediction statistics for TSS, in 

terms of both RMSEP and bias, relative to a calibration developed using fruit re-

scanned at all temperatures.  Using all samples in the ‘repeatability’ file was, 

however, better than using only 4 from each scanning temperature in this WINISI 

option.   
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Table 2. Effect of temperature on prediction of dry matter (DM) and total 
soluble solids (TSS) for mandarin fruit.  Models were developed on a population 
of 70 samples, mean 9.6% and standard deviation (SD) 1.51% for TSS, and 
mean 14.7% and SD 1.66% for DM, from spectra collected of these fruit at 10, 22 
and 30°C.  The prediction populations were based on a population of 34 samples, 
mean 9.8%, SD 1.64% for TSS and mean 14.7%, SD 2.03% for DM, again with 
spectra collected of these fruit at 10, 22 and 30°C.  The calibration models for 
TSS involved 5 terms, while those for DM involved 6 or 7 terms.  Calibration 
models were developed on spectra of fruit at 10, 22, 30, 10 and 22°C, and all 3 
temperatures.  The WINISI ‘repeatability file’ option was also employed, using 4 
samples and all samples.  The 4 samples with lowest Mahalanobis Global H 
statistic (GH) values from the 22°C population were used.   

 

DISCUSSION 

Calibration robustness – across seasons, locations and harvest time 

Validation of a model on a population independent of that used in calibration 

effectively tests for over-fitting of the model.  Where the calibration model has 

weighted spectral features that represent fruit characteristics that are correlated to the 

attribute of interest in the calibration population, but not in the validation population, 

then validation performance will be poor.  An example is a calibration developed for a 

variety in which skin chlorophyll content (skin greenness) is related to fruit TSS at 

maturity, which will not predict well with a variety in which there is no such 

Sample Temperature
(oC) n RMSEP R c

2 RMSECV bias RMSEP(C) bias RMSEP(C) bias RMSEP(C)
DM 
10 70    0.63 a,b 0.85 0.71
22 70 0.41 a 0.94 0.51 0.54 0.79 0.04 0.52 -1.48 0.79
30 70 0.61 b 0.86 0.66

10+22 140 0.53   0.9 0.6 -0.26 0.77 -0.01 0.65 -0.78 0.81
10+22+30 210 0.55   0.89 0.6 -0.2 0.67 -0.01 0.56 -0.15 0.68

22+repeatability 70 0.57   0.88 0.6 -0.11 0.84 -0.08 0.8 -0.14 0.86

TSS
10 70 0.69 a 0.79 0.75
22 70 0.73 a 0.77 0.88 0.89 1.16 0.22 1.13 -1.17 1.18
30 70 0.63 b 0.82 0.76

10+22 140 0.69   0.79 0.62 -0.08 1.11 0.17 1.11 -0.15 1.1
10+22+30 210 0.68   0.79 0.62 -0.05 1.14 0.38 1.19 0.07 1.17

22+repeatability 70 0.69   0.79 0.81 -0.07 0.9 0.07 0.95 -0.07 0.89
22+repeatability (4 samples) 70 0.79   0.73 0.89 -0.15 1.09 0.16 1.13 0.03 1.12

Prediction model statistics
10oC 22oC 30oC

Calibration model statistics
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relationship (unless the wavelength range considered is trimmed to eliminate the 

spurious correlation). 

Calibration performance across harvest days (fruit from 1 tree in the 1 season) 

was superior to that across locations (fruit from harvests from varying farms in 1 

season) (e.g. S/N statistic of 20 and 13, respectively, with an average RMSEP of 0.49 

and 0.78% TSS), but performance was dramatically degraded when applied across 

seasons (S/N of 4, average RMSEP of 3.64% TSS). There was no trend for 

performance to degrade with increasing time (days) or distance/soil type of harvest 

(data not shown).  

Taguchi descriptors calculated from 3 literature reports differ to those reported 

here.  A S/N statistic of between 15 and 19, with an average RMSEP of approximately 

1.1% TSS was calculated from the results of Peiris et al. (1998b) for the use of peach 

TSS calibrations across 3 seasons. The S/N statistic and average RMSEP for the use 

of a single variety calibration model across other varieties was between 12 and 17, 

with an average RMSEP of approximately 1.0% TSS.  The mandarin TSS predictions 

of Miyamoto and Kitano (1995) and Ou et al. (1997) yield a S/N statistic of 20 and 

average RMSEP of 0.58 for predictions applied across seasons, and 7 (S/N) and 0.81 

(average RMSEP) across locations.  Thus previous studies indicate that model 

performance should be more stable across seasons, for a given variety, than across 

varieties, in a given season.   

The cause of the dramatic decrease in performance of a calibration when applied 

to fruit across seasons in this study is not clear and could reflect changes in the 

instrument used as well as changes in the sample (fruit).  However, there were no 

obvious changes in lamp or detector characteristics (i.e. in white reference spectra 

collected across years).  The change in calibration performance between seasons is 
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therefore more likely to represent changes in fruit optics (e.g. cell size, porosity), with 

consequent changes in the volume of fruit optically sampled, or in fruit composition 

(with characters other than the character of interest varying, and absorbing in similar 

wavelength regions).   

Sample addition for calibration  

To improve calibration performance on a new validation population, a common 

strategy is the addition of samples from the new population to the calibration 

population.  The RMSEP and bias (Figs. 1 to 5) decreased with addition of validation 

samples to the calibration population reaching a stable value with the addition of 

about 20 samples.  Several approaches were used in the selection of samples from the 

validation population for addition to the calibration population, however 

(surprisingly) all methods performed equally well.  This result indicates that the 

variation within a new population must be small, relative to the difference of that 

population to the calibration population, such that any sample chosen from within a 

given population is a useful representative of that population. 

The higher the average GH of the validation population when calculated on the 

calibration population scores (Figs. 4 and 5 for the attributes of TSS and DM, 

respectively), the greater the improvement to RMSEP and bias with the addition of 

validation population samples.  Higher average GH values reflect an increased 

difference in the spectra of calibration and validation populations, and a greater 

leverage on the MPLS regression will be gained in sample addition from the 

validation population.   

It is surprising, however, that the reverse was not true, i.e. that the addition of 

high GH validation samples to the calibration population was not more effective than 
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the addition of low GH validation samples, in terms of improvement to prediction 

RMSEP and bias. 

In practice, the level of accuracy required must be established for each sorting 

task.  Higher accuracy requirements will require higher calibration maintenance.  This 

maintenance might involve adjustment of bias for new populations, or recalibration 

with addition of spectra of at least 20 fruit from the new population to the existing 

calibration population, to recover RMSEP values.   

It is not obvious why the inclusion of such a small number of samples to the 

calibration population can have such an influential effect.  It may be partly due to the 

added samples being so different (separate) from the original calibration population, 

resulting in 2 ‘clusters’ (original and new), which are basically treated by the 

calibration as 2 ‘points’ (Fig. 6).  However, it is then intriguing that the model 

predicts so well on the validation population.  Regardless, the methodology was 

observed to work well in a number of circumstances and for a number of populations. 

 

 

 

 

 

Figure 6. Three-dimensional plot of MPLS scores (1, 2 and 3) of the 
calibration population T (n = 103) and an independent set (sub-set of population 
V, n = 30) calculated using a calibration model for dry matter content.  

T V 



 118

Calibration robustness - temperature 
Mandarin fruit temperature can vary from 5ºC (recommended storage 

temperature) to over 30ºC (field temperature) during in-line grading in a commercial 

packing shed.  Temperature impacts on the degree of H bonding, and thus the position 

and intensity of OH stretching vibration bands.  There are 2 main forms of liquid 

water, 1 form involving a H bond to another water molecule, and the other form 

involving more structured water.  The second form dominates at lower temperatures, 

and absorbs at higher wavelengths relative to the first form.  Golic et al. (2003) 

reported that calibration model statistics for models developed for pure sucrose 

solutions across a range of sample temperatures were degraded relative to those at a 

constant temperature (20ºC).  These calibrations resulted in a de-emphasis on those 

areas of the spectrum associated with OH stretching, favouring those areas associated 

with other spectral bands of the sugars (e.g. 910 nm CH third overtone).   

Where a model was required to predict samples with temperatures outside the 

range included in the calibration population, bias was increased for both DM and TSS 

models (Table 2).  The RMSEP was affected primarily through an effect on prediction 

bias.  Therefore the following discussion reports on bias and RMSEP(C).  In practical 

application, a bias adjustment could be applied for the use of a calibration at 

temperatures outside of the range included in the calibration population. 

Calibrations developed across a wide range of temperatures are expected to be 

more robust in terms of predicting analyte levels of samples at a range of 

temperatures, although potentially at the expense of diminished accuracy.  Prediction 

robustness in terms of bias was indeed increased for models developed across several 

temperatures, but accuracy (RMSEP(C)) was similar to that of single temperature 

calibration models, for both DM and TSS (Table 2).  Kawano et al. (1995) also found 
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that incorporation of samples across a temperature range in a (MLR) calibration 

allowed prediction of TSS with a high degree of accuracy and minimal bias.   

We expected DM calibration models to be more sensitive to temperature than 

TSS models, given the sensitivity of the water bands to temperature (H bonding 

status) (Golic et al. 2003).  This was not so, with TSS and DM similarly sensitive to 

temperature (Table 2).  Presumably this effect reflects the large contribution of sugar 

OH features which are sensitive to H bonding status, and thus to temperature, in both 

the TSS and DM calibration models.   

The ‘repeatability’ file option in WINISI was implemented in an attempt to 

reduce the sensitivity of the calibration to both sample and instrument temperature 

variations.  Wavelengths with less change due to temperature should receive higher 

PLS scores, thus decreasing emphasis on the remaining wavelengths.  For DM, 

implementation, to the extreme of including all spectra in the ‘repeatability’ file, was 

not as successful as incorporating all spectra from the same fruit scanned at a range of 

temperatures into the calibration population.  However, the reverse occurred for TSS. 

CONCLUSIONS 

Calibration models were less robust across seasons than across locations and 

time within a harvest season.  In all cases, model updating involving the addition of 

relatively few samples (approximately 20) was successful in improving prediction of 

new populations.  The method of sample addition was not crucial.  Therefore, for ease 

of operation the random selection approach is the logical choice for sample addition to 

improve RMSEP and bias in the prediction of independent validation populations (for 

both the attributes of TSS and DM).  The higher the average GH of the independent 
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population with respect to the scores and loadings of the calibration population, the 

greater the beneficial effect of sample addition.   

We conclude, in agreement with Miyamoto and Kitano (1995) and Kawano et 

al. (1995) that samples scanned at a range of temperatures should be included in the 

calibration population in order for the model to be robust in prediction of samples 

varying in sample temperature.  The issue of calibration population design to 

incorporate robustness for sample temperature without loss of general validation 

accuracy (i.e. what proportion of calibration samples should be run at different 

temperatures, and over what number of temperature steps) requires further 

consideration.  Alternatively, the orthogonal projection method suggested recently by 

Roger et al. (2003) in a consideration of model robustness across instruments may 

have merit for increasing calibration robustness to temperature variation.   
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5 
MODEL DEVELOPMENT AND 

ROBUSTNESS IN PREDICTION OF MELON 
FRUIT TOTAL SOLUBLE SOLIDS4 

ABSTRACT 

The robustness of multivariate calibration models, based on near infra-red 

spectroscopy in a partial transmittance optical geometry, for the assessment of total 

soluble solids (TSS) of intact rockmelons (Cucumis melo) was assessed.  The 

mesocarp TSS was highest around the fruit equator and increased towards the seed 

cavity.  Inner mesocarp TSS levels decreased towards both the proximal and distal 

ends of the fruit, but more so towards the proximal end.  The equatorial region of the 

fruit was chosen as representative of the fruit for near infra-red assessment of TSS.  

The spectral window was optimised at 695 to 1,045 nm, and the data pre-treatment 

procedures were optimised to second derivative absorbance without scatter correction.  

The ‘global’ modified partial least squares (MPLS) regression modelling procedure of 

WINISI (ver. 1.04) was found to be superior with respect to root mean square error of 

prediction (RMSEP) and bias for model predictions of TSS across seasons,

                                                 

4 This chapter has been submitted to the Australian Journal of Agricultural Research, 2005, 00, 000-
000 under the title: ‘NIR model development and robustness in prediction of melon fruit total soluble 
solids’.  Aspects of this work have been published in: Proceedings of the 8th International Conference 
on Near Infrared Spectroscopy, Essen, Germany, (Editors AMC Davies) 1998, under the title: 
‘Robustness of NIR calibrations for soluble solids in intact melon and pineapple’.  Authors were JA 
Guthrie, BB Wedding and KB Walsh (Appendix B); and in: Proceedings of the 9th International 
Conference on Near Infrared Spectroscopy, Verona, Italy, (Editors AMC Davies and R Giangiacomo) 
1999, under the title: ‘Development and use of an ‘at-line’ NIR instrument to evaluate robustness of 
melon Brix calibrations’.  Authors were KB Walsh, CV Greensill and JA Guthrie (Appendix C).  
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compared to the ‘local’ MPLS regression procedure.  Updating of the model with 

samples selected randomly from the independent validation population demonstrated 

improvement in both RMSEP and bias with addition of approximately 15 samples. 

INTRODUCTION 

Consumer acceptability for rockmelons (Cucumis melo) is correlated with sugar 

concentration at harvest (Lester and Shellie 1992), although the presence of various 

volatile compounds is also relevant (Yamaguchi et al. 1977).  Thus high sugar 

concentrations do not totally define eating quality, however, the absence of high total 

soluble solids (TSS) makes good eating quality highly unlikely.  Mutton et al. (1981) 

established a level of 10% total soluble solids as a minimum standard to ensure 

adequate eating quality of rockmelons for the Australian fresh fruit market.   

The assessment of the TSS of intact melon fruit using near infra-red 

spectroscopy (NIRS) using a halogen light source was first reported by Dull et al. 

(1989).  A reflectance optical geometry was used, with a root mean square error of 

prediction (RMSEP) of 2.2 % reported (on a single population (variety not stated)) of 

fruit (standard deviation (SD) not stated).  Reflectance optics were also used by Birth 

et al. (1990), again with a RMSEP of 2.2 % (on a single population (variety not 

stated) of fruit (SD not stated). This group continued this line of work (using second 

derivative spectral data), reporting a RMSEP of 1.9 % (on a single population of fruit 

(SD not stated)) with a range of 5.6 – 13.1% TSS (Dull et al. 1990).  Aoki et al. 

(1996) reported use of transmission optics and a RMSEP of 0.4% TSS (on a 

population of fruit with SD of 0.76% TSS).  Work in Australia followed, with Guthrie 

et al. (1998) using a reflectance geometry with a NIRSystems 6500 to achieve a 

RMSEP of 0.9 % TSS (on a combined variety population of fruit with a SD of 3.2% 
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TSS).  Greensill and Walsh (2000) reported the use of a non-contact interactance 

geometry for assessment of melon TSS.  In these manuscripts a RMSEP of around 

0.7% TSS, on a population with a SD of 1.3% TSS, was reported.   

Commercial application of NIRS to fruit sorting was first initiated by the 

Japanese companies Fantec and Mitsui Metals and Mining in 1999 (Kawano 1994a).  

Mitsui product literature reports an “accuracy” (interpreted as RMSEP) of 0.5% TSS 

for peach, apple and Japanese pear.  Other companies followed, with Sumitomo 

Metals and Mining bringing a diode laser based system onto the Japanese market, and 

Colour Vision Systems (Bacchus Marsh, Australia) bringing a system based on the 

non-contact interactance geometry mentioned earlier onto the Australian market in 

2000.  Sumitomo literature quotes a “SEP” of > 0.8 % (no SD reported) with “no bias 

errors”, while Colour Vision Systems claim a RMSEP of < 1%.  The Sumitomo 

product appears to be no longer commercially offered.  The demise of this product 

may reflect the high price of the equipment (approx $A1,000,000 for a single lane 

pack line incorporating the NIR sensor) or equipment instability problems (laser 

output instability, temperature control).  

The above manuscripts (and commercial product literature) focus on reporting 

calibration model statistics or a prediction of a subset of the population from which 

the calibration population is drawn.  Model performance in validation of new 

populations, not included in the calibration population, is a harsher exercise.  

Equipment manufacturers appear to rely on frequent recalibration to address this 

issue, with the exception of the Sumitomo laser unit, which was marketed on the basis 

of calibration model stability.   

Model updating is practiced in a wide range of NIR application areas, generally 

involving selection of representative samples of the new population for addition to the 
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calibration population (see Chapter 1).  In a previous exercise with mandarins 

(Chapter 4), it was demonstrated that model updating following addition to the 

calibration population of a relatively small number of samples (< 20) chosen by any 

procedure (e.g. random) from the validation population was a successful strategy.   

Model robustness across populations of fruit has been noted to be sensitive to 

changes in growing condition and variety (see Chapters 1, 4).  In Chapter 4, model 

performance for prediction of intact mandarin TSS was shown to be more sensitive to 

year than to time within a growing season or growing location.  In melon Ito et al. 

(1999) noted that individual varietal calibration models are successful when 

predicting Brix on the same variety within the same season.  He reported on the use of 

a calibration model developed in 1 season to predict a single lot from the subsequent 

season.  The only published work on TSS model robustness in melons is that of 

Guthrie and Walsh (1998).  In this work stepwise multiple linear regression (MLR) 

models were developed using between 3 and 5 wavelengths, rather than modified 

partial least squares (MPLS) regression of the full spectrum, from reflectance spectra.  

Model performance was reasonable across some, but not all, varieties, and model 

performance markedly deteriorated across populations of the same varieties harvested 

at different times within a season.  The reflectance technique is likely to optically 

sample the fruit to a depth of approximately 5 mm only (e.g. Lammertyn et al. 

(2000)).  The low coefficient of determination for the calibration population (Rc
2), 

coefficient of determination of the validation population (Rv
2) and higher RMSEP 

obtained for particular varieties (e.g. 'Eastern Star' and ‘El Dorado’) were attributed to 

the nature of the skin (irregular and thicker epidermal layers) of these varieties.  

Further, as there is a poor correlation between skin and inner mesocarp TSS, Guthrie 

and Walsh (1998) suggested that the correlation of mesocarp TSS with spectral data 
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may represent a secondary correlation with another constituent of the skin and green 

flesh layers.  A breakdown in this secondary correlation could be responsible for the 

lack of model robustness. 

Sugiyama (1999) reported that absorbance at 676 nm was closely correlated 

with TSS, and used this character in imaging of TSS distributed across the cut melon 

surface.  Absorbance at 676 nm presumably acts as an index of chlorophyll content, 

with TSS related to chlorophyll content indirectly, through fruit maturity.  However, 

these models predicted poorly across different varieties and subsequent work focussed 

on the use of spectroscopically justified wavelengths involving the use of the second 

derivative at 880 and 910 nm (Tsuta et al. 2002).   

In this chapter we further examine the issue of rockmelon TSS model 

robustness, and the use of model updating procedures using small numbers of samples 

from the new population.  Thus this work extends the consideration of Guthrie et al. 

(1998) using the partial transmittance instrumentation characterised in Chapter 2, and 

the model updating procedure described in Chapter 4.   

MATERIALS AND METHODS 

Plant material 

Rockmelon fruit (Cucumis melo (L) varieties ‘Eastern Star’, ‘Hammersley’, 

‘Doubloon’, ‘Highline’, ‘Malibu’, ‘Mission’, ‘El Dorado’, ‘Colusa’, ‘Sterling’ and 

‘Hotshot’ were sourced after commercial harvest from growers in 4 growing districts 

(Bundaberg (24.9° S, 152.3° E), Chinchilla (26.5° S, 150.4° E), Gumlu (19.9° S, 

147.7° E) and Kununurra (15.5° S, 128.4° E)).  In all, 22 populations of various 

varieties of rockmelons (each of approximately 100 fruit), obtained over different 
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seasons and growing districts, were used for spectral acquisition and then assessed for 

TSS.  A spectrum was collected per fruit from the equatorial region (defined relative 

to the stem – calyx axis) and the area scanned was then excised from the fruit (60 mm 

diameter core to a depth of 20 mm), skin removed, crushed to extract the juice and the 

TSS assessed using digital refractometry (Bellingham and Stanley RMF 320).  All 

populations were alphabetically named within each year (Table 1).   

Five rockmelon fruit (variety ‘Doubloon’) were assessed for TSS distribution 

within the mesocarp (Fig. 1a).  Twelve slices, each of approximately 1 cm thickness, 

were taken from the distal (calyx) end through to the proximal (stem) end of each 

fruit.  Twelve TSS measurements per slice (6 from the outer and 6 from the inner 

mesocarp, with sampling at and between each of the 3 vascular tissue areas.  Data was 

normalised to the TSS concentration at slice 6 (equatorial) of the inner mesocarp (Fig. 

1b).   

The penetration of near infra-red radiation through an intact fruit was visualised 

by illuminating 1 side of the fruit equator with a 100 Watt halogen lamp and 

monitoring 180° to this point with a Zeiss MMS1 spectrometer.  The fibre optic 

bundle of the MMS1 was moved over a grid pattern, detecting light at the wavelength 

of maximum detected intensity (820 nm) from a 1 cm2 area of the fruit flesh surface 

as the fruit was consecutively cut away in 1 cm thicknesses from the opposite end to 

the light source (in the plane perpendicular to the lamp – fruit axis) (Fig. 2).  The 

results of the light penetration were plotted using a volumetric-data visualisation 

software package (Slicer Dicer ver. 3.0).   
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Table 1. Population and NIR TSS calibration statistics using MPLS ‘global’ 
procedure for 22 populations of 10 different varieties of rockmelon fruit 
harvested over 3 years and from 4 growing districts within Queensland and 
Western Australia. 

 

Population Variety Growing 
location n Mean TSS SD MPLS 

factors Rc
2 RMSECV SDR 

1998a Eastern star Bundaberg 75 8.0 1.42 7 0.84 0.76 1.9 

1998b Hammersley Chinchilla 80 7.5 1.16 8 0.67 0.92 1.3 

1999a Eastern star    Gumlu 71 9.0 1.10 6 0.72 0.81 1.4 

1999b Eastern star Gumlu 80 9.4 0.93 8 0.66 0.84 1.1 

1999c Eastern star Gumlu 90 8.9 1.03 8 0.83 0.63 1.6 

1999d Eastern star Gumlu 78 9.7 0.95 6 0.69 0.67 1.4 

1999e Eastern star Gumlu 100 9.3 1.91 9 0.85 1.1 1.8 

1999f Hammersley Gumlu 80 7.6 1.12 7 0.67 0.91 1.2 

1999g Doubloon Chinchilla 85 8.6 1.37 6 0.63 1.23 1.1 

1999h Doubloon Chinchilla 86 8.3 1.25 7 0.76 0.73 1.7 

1999i Doubloon Chinchilla 99 7.6 0.93 13 0.78 0.70 1.3 

1999j Doubloon Chinchilla 99 8.5 1.03 8 0.56 0.96 1.1 

1999k Highline Chinchilla 90 8.8 1.10 7 0.78 0.65 1.7 

1999l Malibu Chinchilla 92 7.5 1.01 8 0.74 0.67 1.5 

1999m Mission    Gumlu 105 9.9 1.10 7 0.74 0.71 1.5 

1999n El dorado Gumlu 130 11.8 1.66 7 0.89 0.66 2.5 

1999o El dorado Gumlu 100 9.4 1.70 7 0.80 0.95 1.8 

2000a Colusa Kununurra 100 9.3 1.80 9 0.91 0.68 2.7 

2000b Sterling Kununurra 96 9.3 0.88 6 0.65 0.69 1.3 

2000c Hotshot Gumlu 80 8.3 1.32 4 0.82 0.68 1.9 

2000d Hotshot Kununurra 100 10.3 1.00 8 0.74 0.67 1.5 

2000e Hotshot Kununurra 99 9.5 0.95 7 0.66 0.71 1.3 
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Figure 1. Spatial distribution of the attribute of total soluble solids (TSS) in 
rockmelon fruit (variety ‘Doubloon’).  (a) Image of fruit indicating location of 
sampling.  (b) TSS distribution.  Fruit were cut transversely into 12 slices.  Each 
slice was assessed for % TSS in the inner (open symbols) and outer mesocarp 
(solid symbols), adjacent (triangles) and between (circle) vascular tissue (12 
locations per slice).  Data points represent the average of 30 values (6 positions 
per fruit, 5 fruit), normalised to the TSS concentration at slice 6 (equatorial) of 
the inner mesocarp.  Slices are numbered from proximal to distal end of the 
fruit. 
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Figure 2. Light penetration through a rockmelon fruit.  Light (100 Watt 
tungsten-halogen lamp) illuminated position A on the equator of the fruit.  Data 
of a virtual longitudinal slice in the plane of the lamp – fruit axis (for a fruit 
position with stem end uppermost) is presented.  Scale bar is in arbitrary units of 
detector analogue to digital counts.   

Spectral acquisition 

Spectra were collected over the wavelength range 306 – 1,130 nm using a NIR 

enhanced Zeiss MMS1 spectrometer (photo-diode array, comprising 256 silicon 

detectors with a resolution of approximately 3.3 nm) and 4 tungsten halogen lamps of 

50 Watt each, in a partial transmission optical configuration as described in Walsh et 

al. (2000) (45° angle between illumination source and detector, relative to the fruit 

centre, with the detector probe in contact with the fruit surface).  White (teflon tile) 
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and dark reference measurements were taken at the start of each experimental run.  

Spectra were averaged over 4 scans at an integration time of 200 ms per scan.   

Chemometrics 

The software package WINISI (ver. 1.04a) (ISI International, USA) was used 

for all chemometric analysis.  WINISI employs a modified partial least squares 

regression (MPLS) procedure in which the reference data and the spectral data at all 

wavelengths are scaled to give a standard deviation of 1.0 before calculation of each 

subsequent MPLS factors (Shenk and Westerhaus 1991).  Calibrations were 

developed using MPLS in both ‘global’ and ‘local’ WINISI procedures (based on the 

combined 1998 and 1999 populations).   

In the ‘global’ procedure a single MPLS calibration model is developed using 

all the samples in the calibration population (excluding ‘outliers’).  The ‘global’ 

WINISI models were optimised in terms of wavelength interval, derivative condition 

and scatter correction technique.  The significance of differences between both the 

RMSEP and bias of the different models were tested according to the procedures of 

Fearn (1996), using a significance level of 95%.   

In the ‘local’ procedure, a separate MPLS model is developed for every sample 

to be predicted.  This model is based on a small number of spectra from the 

calibration population selected on the basis of similarity to the unknown sample 

(based on a regression of the scores of the unknown sample against those of all 

members of a sample library) (Shenk et al 1997).  This procedure results in a model 

‘over-fitted’ in the sense that the model is fit only for use in prediction of 1 unknown 

sample.  The number of samples used (20 – 100, steps of 20), the number of MPLS 

factors used (5 – 25, steps of 5), and the number of MPLS factors removed (1 – 5, 
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steps of 1) (125 combinations) was optimised on the basis of lowest RMSEP(C) for 

validation across the 5 populations from the year 2000 (as used in Table 1) (data not 

shown).  The WINISI software forced the removal of at least 1 MPLS factor, on the 

basis that the first MPLS factor is indicative of the scattering of light in the sample 

due to particle size and not the attribute of interest.   

Calibration performance for both ‘local’ and ‘global’ MPLS procedures was 

assessed in terms of Rv
2, RMSEP, standard deviation ratio (SDR = SD/RMSECV or 

RMSEP), slope and bias of the validation populations as per Guthrie et al. (2005a).  

The SDR facilitates comparison of different populations with differing SD’s.  The 

best data pre-treatment (second derivative with gap size of 4 data points either side 

and no scatter correction, data not shown) was used in all subsequent model 

development.  The RMSECV, RMSEP and bias values were tested for significance 

(P = 0.05) using the procedure of Fearn (1996) (Appendix F). 

In a separate exercise, the effect of spectral window on partial least squares 

(PLS) calibration model performance for TSS was optimised in terms of root mean 

square error of calibration (RMSEC) using a moving PLS interval algorithm, 

developed in Matlab (ver. 7.0) – PLS toolbox (ver. 3.5 by Eigenvector) (Guthrie et al. 

2005a).  The combined populations of years 1 and 2 (17 populations comprising 1,467 

spectra) were used, employing second derivative (WINISI gap size 4 without scatter 

correction) absorbance data interpolated to 3 nm steps.  The start and end wavelengths 

of the spectral window were varied from 650 to 950 nm, and 750 to 1,050 nm, 

respectively, in increments of approximately 3 nm and a map produced that involved 

20,200 separate PLS models.  For each model, the number of PLS factors was 

determined on the basis of a 3% difference between RMSEC and RMSECV values.  

Model performance is reported in terms of RMSEC in this exercise.   
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Figure 3. Calibration model performance (root mean square standard error 
of calibration (RMSEC)) for varying spectral windows (start and end 
wavelengths varied).  Partial least squares calibration models were based on the 
combined populations from year 1998 and 1999 (17 populations) for total soluble 
solids (mean = 8.9% TSS and SD = 1.73% TSS).   
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Table 2. Optimisation of data pre-treatment in terms of derivative 
treatment (none, first or second order) and 2 wavelength regions (695 – 1,046, 
722 –945 nm) for TSS calibration.  Model performance is reported in terms of 
prediction of 5 independent populations of rockmelon fruit(year 3 harvest).  The 
model was developed using the combination of 17 populations (year 1 and 2 
harvests, n = 1,467, mean = 8.9%, SD = 1.73% and range of 4.8 - 15.2% TSS). 

For each population, the treatment with the lowest overall RMSEP was 
presented in bold (but not underlined).  The corresponding bias was also bolded.  
These values were then compared with that related to the lowest RMSEP in the 
other wavelength window, and that related to the highest RMSEP value in the 
other derivative condition of the same wavelength region (value underlined).  
These values were tested for significance (95% probability level), with 
significantly different values shown in bold. 

 

  Variance (RMSEP)  bias  
Math 
treatment Absorb. 1st Deriv. 2nd Deriv. Absorb. 1st Deriv. 2nd Deriv. 
Population A       
695-1046 nm 1.0 1.1 1.0  0.24  0.22  0.04 
722-945 nm 1.1DT 1.3 1.0DT -0.42  0.86  0.28 

Population B       
695-1046 nm 0.7 0.6 0.6  0.18  0.05 -0.09 
722-945 nm 0.8 0.9 0.6 -0.53  0.69  0.10 

Population 
C 

      

695-1046 nm 1.1 1.1 1.3 -0.58 -0.69 -0.87 
722-945 nm 1.1 0.9 1.4 -0.68 -0.28 -1.05 

Population 
D 

      

695-1046 nm 1.2 1.2 1.0  0.85  0.84  0.70 
722-945 nm 0.8 1.6 1.2  0.16  1.5  0.92 

Population E       
695-1046 nm 0.7 0.7 0.7  0.19  0.22  0.08 
722-945 nm 0.8 1.1 0.7 -0.40  0.92  0.37 

 

Model updating 

The use of a model to predict attribute levels of a totally independent population 

is often compromised.  The inclusion of a number of samples from the new population 

into the calibration population, with subsequent redevelopment of the MPLS model 

(‘model updating’) is a well accepted procedure to encompass new variation in the 
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sample.  However, there is no rule defining the number of samples required to 

‘update’ the model.  Guthrie and Walsh (2001) and Guthrie et al. (2005b) reported on 

the use of a range of sample selection protocols for updating of mandarin TSS models, 

and the recommended procedures are trialled in the current study. .  In those studies, 

the use of 20 samples for updating was recommended. 

Each validation population was initially screened for outliers (defined as 

samples with a Mahalanobis distance (GH) > 3.0 using the scores and loadings from 

the validation population (Shenk and Westerhaus 1991)).  These outliers were 

removed (for populations A, B and C – 6, 5 and 7 outliers, respectively) and the 

resulting data were divided randomly into 2 sets.  One set (2/3) was retained as a 

validation population and the other set (1/3) used for selection of samples for addition 

to the calibration population.  Two validation populations were chosen that exhibited 

a low and high average GH value (calculated from the scores and loadings of the 

calibration population), respectively.  That is, these 2 populations will each represent 

a new population similar to, and markedly different from, the calibration population.  

For addition to the calibration population (comprising 17 populations from years 1999 

and 1998), new samples were chosen on a random basis from the subset of the 

validation population (1/3).  Calibration models were then developed using MPLS 

regression in both ‘global’ and ‘local’ WINISI procedures.   
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Figure 4. Prediction statistics for ‘global’ WINISI modified partial least 
squares regression models in prediction of total soluble solids in rockmelon fruit 
for two independent (of calibration populations) validation populations.  The 
average of global Mahalanobis distance (GH) of samples in the validation 
population was calculated using calibration model scores.  The initial calibration 
population was comprised of the combined population of years 1998 and 1999 
(17 populations).  Populations from year 2000 (2 populations, A and C) were 
used as validation populations, less the 1 third randomly selected samples which 
were used for ‘model updating’ (addition to the calibration population).  Samples 
for ‘model updating’ were chosen at randomly from this population. 
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Figure 5. Prediction statistics for ‘local’ WINISI modified partial least 
squares regression models in prediction of total soluble solids in rockmelon fruit 
for 2 independent (of calibration populations) validation populations.  The data 
populations used and treatments undertaken were the same as in Fig. 4.   

RESULTS AND DISCUSSION 

Attribute distribution and light penetration  

In the inner mesocarp, TSS content was highest around the equator of the fruit 

and lessened towards both ends, but slightly more so towards the proximal end.  
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However, in the outer mesocarp there was little difference along the length of the 

fruit.  Within the fruit, TSS concentration increased from the skin to the seed cavity 

and was highest around the vascular bundles near the seed cavity (Fig. 1b).  There was 

little variation in TSS around the equator of the fruit, even when that part of the fruit 

in contact with the ground was sampled.  The difference in TSS levels between 

various parts of an individual fruit’s flesh was as great as 6 to 7% TSS and averaged 

approximately 4% TSS overall.  These observations reinforce the need to take both 

spectroscopic and reference values from the same area on the fruit. 

Ito et al. (1999) chose to base spectroscopic assessment of melons on the calyx 

end because “the flesh in the calyx end of melon fruit is thinner than that in other 

parts”.  Certainly the chlorophyll containing mesocarp layer is thinner in this region, 

and the mesocarp is thinner overall.  However, the variation between the inner and 

outer mesocarp is similar to that in other regions of the fruit (Fig. 1b).  To facilitate in-

line fruit grading, we chose to assess fruit in an equatorial position of the fruit.   

Light penetrated further through the centre of the fruit (i.e. through the seed 

cavity) than through the mesocarp layers (Fig. 2).  Light penetrated through the bulk 

of the fruit, propagating through the mesocarp layers but was absorbed strongly by the 

exocarp layers.  With a 100 Watt lamp, light was detectable in transmission through 

the fruit once the skin (5 mm depth) was removed. 

We conclude that the skin of the intact fruit presents the greatest obstacle to the 

penetration of NIR radiation.  This is more so than in other fruit (e.g. apples, stone 

fruit) because of the relative thickness and often irregular (e.g. netted) surface of 

rockmelon fruit.   
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Spectral window and data treatment 

The spectral window used in PLS calibration model development for TSS was 

optimised in terms of RMSEC (Fig. 3) using the moving PLS interval algorithm 

described above.  Low RMSEC values for TSS were obtained for a window beginning 

between 702 and 709 nm, and finishing between 914 and 920 nm, although acceptable 

results were obtained up to 1,050 nm (Fig. 3).  The minimum RMSEC for TSS 

(0.26%) was recorded for a start wavelength of 709 nm and a finish wavelength of 

917 nm, surrounded by an area (or island) of low RMSEC values, suggesting a stable 

spectral region for TSS model development.   

Although the RMSEC was used to compare the relative spectral regions, the 

final ‘proof’ of a model is in its validation statistics rather than the calibration 

statistics.  Using a model developed utilising a combined population of years 1 (1998) 

and 2 (1999) (17 populations across varieties and growing districts) to predict the 5 

populations from year 3 (2000), the best data pre-treatment routine was second 

derivative absorbance data without scatter correction (Table 2).  The use of derivative 

spectra is a very effective method for removing both the baseline offset and the slope 

from a spectrum (Norris 1982).  The full short wave NIR region (695 to 1,045 nm) 

was not significantly better than the restricted region (722 – 945 nm) in terms of 

RMSEP, but was significantly better (5% level) in regard to bias in 4 out of the 5 

independent validation populations (Table 2).  Both windows encompass the 

spectrally significant 910 nm third overtone of CH stretching (which will primarily be 

due to sucrose in melon fruit).  Therefore, second derivative absorbance data without 

scatter correction, over a 695 – 1,045 nm wavelength range, was subsequently used in 

all calibration model development.   
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Calibration model statistics varied across the 22 populations, with root mean 

square error of cross validation (RMSECV) ranging from 0.63 to 1.2% TSS and the 

SDR from 1.1 to a high of 2.7 (Table 1).  In prediction of independent data sets, the 

models gave similar or better results (in terms of RMSEP, see Tables 2,3) than that 

obtained by other researchers [e.g. Dull et al. (1990), RMSEP of 1.9% TSS; Guthrie 

et al. (1998), RMSEP of 0.9% TSS and Greensill and Walsh (2000), RMSEP of 0.7% 

TSS] but were inferior to those obtained by Aoki et al. (1996), RMSEP of 0.4% TSS).  

However, Aoki et al. (1996) employed a population with a lower SD (0.76%TSS) 

than any population in the current study. 

Table 3. Prediction statistics (RMSEP and bias % TSS) for validation 
populations A and C from year 2000 predicted by the calibration from the 
combined population of years 1998 and 1999 (17 populations) using both ‘global’ 
and ‘local’ WINISI MPLS procedures. 

 

MPLS 
calibration 
procedure 

 
Population A 

SD = 1.80% TSS 

 
Population C 

SD = 1.44% TSS 

 RMSEP bias  RMSEP bias 
Global 

 1.1 0.04  1.3 -0.87 

Local  1.5 0.24  2.1 -1.60 

Regression method 

The settings for the ‘local’ procedure were optimised at 100 samples, 25 MPLS 

factors and 1 MPLS factor removed.  As noted above the apparent model ‘over-

fitting’ inherent in the use of 25 MPLS factors is not an issue because of the use of the 

model for the prediction of the 1 sample only.  However, a limitation of the WINISI 

‘local’ procedure is that it forces the elimination of the first MPLS factor.  This step 

may be logical for reflectance spectra in which the first factor can be associated with 



 140

explanation of scattering properties of the sample.  However, this step is not logical 

for partial transmission spectra as used in this study.  Using the MPLS ‘global’ 

procedure the residuals (predicted – actual) for the prediction of populations C were 

independent of analyte level, while those for population A increased with analyte 

levels (data not shown).  It was therefore expected that the ‘local’ procedure might 

improve prediction in the case of population A.  The prediction results of the same 

independent validation populations (Populations A and C from 2000) obtained from 

calibration models developed with the WINISI MPLS ‘global’ procedure were better 

than those obtained from the ‘local’ procedure (Table 3).  The use of alternative to 

‘global’ MPLS, including ‘local’ neural networks and support vector machines should 

be further explored.   

Model updating 

As expected, the prediction performance of a model on an independent 

population was determined by the average GH of that population (calculated using 

calibration model scores and loadings) (Fig. 4).  Better initial prediction occurred 

when the average GH value was low.  Model updating, using a small number of 

samples from the validation population, offers an alternative to the development of a 

entirely new model.  

The effect of model updating to improve the prediction performance of an 

independent validation population depends on the average GH value of the validation 

population  A greater improvement in both prediction RMSEP and bias values is 

demonstrated in both the WINISI procedures of ‘global’ and ‘local’ MPLS calibration 

models following sample addition (model updating) when the validation population 

exhibited a higher initial GH value (Figs. 4 and 5).  A stabilisation of both the 
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RMSEP and bias values occurred with the addition of approximately 15 samples 

(Figs. 4) for both ‘global’ and ‘local’ WINISI procedures (Fig. 5).  

This result is consistent with the work reported for mandarins (Chapter 4).  The 

greater the effect of sample addition - model updating for a high GH validation 

population is ascribed to a greater leverage on the MPLS calibration.  However, it is 

surprising that so few samples (i.e. n = 15) can influence a large calibration 

population (n = 1,467).   

CONCLUSIONS 

Model performance for prediction of TSS in intact rockmelon fruit was inferior 

to previous work on mandarins (Chapters 3 and 4).  This was ascribed to the 

heterogenous distribution of TSS (sugars) within the fruit and poor penetration of 

light through the irregular fruit skin.   

Data selection and pre-treatment was optimised in terms of prediction 

performance.  The use of second derivative absorbance data with scatter correction 

using a spectral window optimised for each application, is recommended.  The 

WINISI MPLS calibration procedure of ‘global’ was superior in terms of RMSEP and 

bias to the ‘local’ procedure in prediction of independent validation populations.  

Prediction statistics (RMSEP and bias) can be improved with the addition of 

approximately 15 samples from the validation population, as found for mandarins 

(Chapter 4) and for intact macadamia kernels (Chapter 6).   
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6 
MODEL DEVELOPMENT AND 

ROBUSTNESS IN PREDICTION OF QUALITY 
ATTRIBUTES OF MACADAMIA KERNELS5 

ABSTRACT 

Spectral data were collected of intact single and ground kernels using 3 

instruments (using Si-PbS, Si and InGaAs detectors), operating over different areas of 

the spectrum (between 400 and 2,500 nm) and employing transmittance, interactance, 

and reflectance sample presentation strategies.  Kernels were assessed on the basis of 

oil and water content, and with respect to the defect categories of insect damage, 

rancidity, discolouration, mould growth, germination, and decomposition.  Model 

performance statistics for oil concentration models were acceptable on all instruments 

(Rc
2 > 0.94; RMSECV < 2.5%, which is similar to reference analysis error), although 

that for the instrument employing reflectance optics was inferior to models developed 

for the instruments employing transmission optics.  However, these models performed 

poorly (Rc
2 0.92, RMSECV ≥ 4.0%) in prediction of oil concentration of kernels of a 

second population acquired in a subsequent season.  Model updating by addition of 

less than 10 samples from the validation population improved prediction of the second 

population with error levels similar (Rv
2 > 0.92, RMSEP 4.7%, bias 0.6% oil)

                                                 

5 An earlier version of this chapter (without data of the second population and related discussion) was 
published in the Australian Journal of Agricultural Research, 2004, 55, 471-476 under the title: 
‘Assessment of quality defects in macadamia kernels using NIR spectroscopy’.   
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to the calibration statistics.  The spectral positions for calibration coefficients for the 

oil models were consistent with absorbance due to the third overtones of CH2 

stretching.  Calibration models for moisture concentration in ground samples were 

acceptable on all instruments (Rc
2 > 0.97; RMSECV <0.2 %), while calibration 

models for this attribute in intact kernels were relatively poor.  Calibration 

coefficients were more highly weighted around 1,360, 740 and 840 nm, consistent 

with absorbance due to overtones of OH stretching and combination.  Kernels with 

brown centres or rancidity could be discriminated from each other and from sound 

kernels using principal component analysis.  Part kernels affected by insect damage, 

discolouration, mould growth, germination, and decomposition could be discriminated 

from sound kernels.  However, discrimination among these defect categories was not 

distinct and could not be validated on an independent population.   

A low cost Si photodiode array instrument is recommended for its potential to 

assess the oil and moisture concentration of intact macadamia kernels.  However, 

further work is required to examine predictive model robustness across different 

populations, including growing districts, cultivars and times. 

INTRODUCTION 

Payment to growers for macadamia nut-in-shell is based on the weight of nut-in-

shell at 10% moisture concentration and on the percentage of sound (defect-free) 

kernels, determined by the processor on representative samples from each 

consignment.  Penalties are imposed if the percentage of unsound kernels exceeds 

3.5%.  Sorting of kernels into sound and the various unsound categories for grower 

payment is currently done by subjective visual evaluation.  The industry would benefit 
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from objective tests that could be used in the processing plant quality assurance 

laboratory.   

A major defect of macadamia nuts is kernel immaturity.  Immaturity is currently 

qualitatively identified using visual criteria for the purpose of grower payments.  This 

defect can be quantified by measuring oil concentration (Ripperton et al. 1938); 

(Himstedt 2002).  Other quality defects include insect damage, rancidity, mould 

growth, decomposition, germination and discolouration.  These defects are also 

assessed visually.  Discolouration in this context is that which is due to causes other 

than insect damage, mould growth, decomposition or germination.  Moisture 

concentration is also an important quality parameter, having a major effect on shelf 

life (Cavaletto et al. 1966).   

Kernel moisture content has a large effect on shelf-life.  Processing of 

macadamia nuts requires factory drying from approximately 10% nut-in-shell (4% 

kernel) moisture to 4% nut-in-shell (1.5% kernel) moisture.  Kernel moisture 

concentration is currently assessed during the drying process by using an oven drying 

method.  Determination of kernel moisture by near infra-red spectroscopy (NIRS) 

would be much more rapid and would therefore be beneficial to the industry.   

Near infra-red spectroscopy is widely employed for oil and moisture 

determination in the oil seed and grain industries.  For example, Tillmann et al. (2000) 

report a Rc
2 of 0.95 and a standard error of cross validation (SECV) of 0.83% for oil 

concentration of whole canola seed, and Williams and Sobering (1993) a Rv
2 of 0.95 

and standard error of prediction (RMSEP) of 0.35% for moisture concentration of 

whole barley seed.  Further, Ha et al. (1998) report a Rc
2 > 0.9 on a range of specific 

fatty acids in sesame seed oil.  Near infra-red spectroscopy has also been used to 

assess various attributes of oil seed quality (e.g. acid value, peroxide value as 
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indicators of rancidity) (Cho et al. (1998) and Ha et al. (1998)).  Other workers have 

used NIRS to assess malting barley grain for fungal contamination resulting in grain 

discolouration (calibrating against grain brightness – L*) (Fox et al. 2000).  The 

technique can also be used for qualitative purposes (e.g. the detection of insect 

damage in whole wheat kernels by measuring the amount of reflected versus absorbed 

light) (Chambers et al. 1994). 

For oil, strong electromagnetic absorption is reported around 2,200 to 2,400 nm 

(CH2 stretch bend and combinations), with weaker absorption around 1,750, 1,200 

and 900 nm (first, second and third overtones of CH2 stretching) (Osborne et al. 

1993).  However, shorter wavelengths allow better penetration of biological samples 

(Kawano et al. 1994b), and as such, shorter wavelengths should be useful in 

assessment of whole macadamia kernels.   

The aim of this project was to assess the feasibility of using NIRS as an 

objective analytical method to replace the existing subjective methods for detection of 

kernel defects.  Typically, the feasibility of using NIRS for a given application is 

assessed using laboratory grade instrumentation that is unsuitable for industry use 

with regard to cost and complexity.  In this project we have drawn on our prior 

expertise with modular, low cost instrumentation (Greensill and Walsh 2000); (Walsh 

et al. 2000), comparing their performance with laboratory grade instrumentation.  It 

was also hypothesised that model robustness would be higher for this application (oil 

concentration of a low moisture product) than for sugar concentration of that of 

models developed for the intact fresh fruit (high moisture products). 
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MATERIALS AND METHODS 

Sampling 

Raw kernels were collected over several weeks of the 2002 and 2004 seasons by 

a commercial processor.  Four populations of kernels were assembled for calibration 

development with respect to oil concentration (1 population in each year), moisture 

concentration, and defects, respectively.  Samples were bulk packed into evacuated, 

heat-sealed, foil laminate bags and stored at 4ºC between collection and analysis.   

Populations of 200 kernels (100 mature and 100 immature and free from other 

defects) in 2002 and 110 kernels (55 mature and 55 immature and free from other 

defects) in 2004 were utilised for oil concentration models.  The use of both mature 

and immature kernels greatly increased the range of oil concentrations studied (Table 

1), desirable for reliable predictive modelling.  A third population (n = 105) of sound, 

mature kernels was used for the moisture concentration study.  Kernels with a range 

of moisture concentrations were obtained by taking nut-in-shell samples at various 

stages during the factory (approximately 5-8 days) drying process (Table 2).  Of this 

population, 105 kernels were used intact, while 35 kernels were ground to pass a 2 

mm screen in a Zyliss CH3250 grinder.  Kernels were removed from the bulk packs 

and packaged individually in heat-sealed low density polyethylene bags (from a single 

manufacturing batch), and were stored refrigerated in individual sample jars, to 

maintain kernel moisture levels.  Spectra were acquired of kernels in their individual 

low density polyethylene bags.  Spectra were also acquired of ground samples (n = 

35), in individual low density polyethylene bags packed to an approximate depth of 5 

mm.  The contribution of the low density polyethylene bags to the acquired spectrum 

of each sample was assumed to be constant. 
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Table 1. Oil concentration, kernel weight and height of 2 populations of 
macadamia kernels (half population mature and half immature kernels).  
Population 1 was assessed in 2002 and population 2 in 2004.   

 

Attribute Mature Immature Total 

Population 1 (Calibration 
population) 

   

Oil (%) Mean + SD 

Range 

75.7 + 2.1 

67.8-81.0 

46.2 + 10.7 

18.9-70.2 

60.7 + 16.84 

18.9 – 81.0 

Weight (g) + SD 2.4 + 0.68 1.3 + 0.24 1.85 + 0.75 

Height (mm) + SD 14.1+ 1.35 11.3 + 1.26 12.7 + 1.93 

Population 2 (Validation 
population) 

   

Oil (%) Mean + SD 

Range 

70.3 + 4.4 

57.3-77.7 

47.9 + 9.7 

29.4-66.9 

59.1+ 15.4 

20.1-77.7 

Weight (g) + SD 2.2 + 0.28 1.4 + 0.38 1.80 + 0.51 

Height (mm) + SD 14.0 + 0.99 12.0 + 1.44 13.0 + 1.59 

 

Table 2. Moisture concentration of 105 intact and 35 ground samples. 
 

Attribute Intact Ground 

Moisture (%) 

Mean + SD 

 

1.92 + 0.33 

 

1.98 + 0.34 

Range 1.4 - 4.2 1.5 - 2.9 

 

In a separate exercise in 2002, spectra were collected of 20 mature kernels of 

each of the 8 categories: sound, affected by mould, brown centres, insect damage, 

decomposition, germination, discolouration, and rancidity; (n = 160).   
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Instrumentation 

Three instruments, operating over different areas of the electromagnetic 

spectrum (Table 3) were used to collect spectra of intact and ground kernels.  

Instrumentation was powered on 2 hours before spectral acquisition to ensure 

operational stability of both light source and detector.   

The Si-PbS system was used in 2 differing modes of reflectance.  One 

incorporated the use of the Foss NIRSystems remote reflectance probe (operating 

between 400 – 1,900 nm) with intact kernels, and the other, a spinning cup module 

(operating between 400 – 2,500 nm) with ground samples.   

The InGaAs and Si systems were used in a full transmission configuration, on 

intact kernels with respect to oil, moisture, brown centres, and rancidity.  A single 50 

W Philips 402004 tungsten halogen lamp was mounted at 180º with respect to the 

sample and the detector fibre optic.  Ground samples sealed in plastic bags were 

placed on an aluminium plate with a 7 mm diameter hole, between detector and light 

source. 

Table 3. Description of Instrumentation. 
 

Detector Type Instrument Wavelength (nm) Optical configuration 
Silicon-Lead Sulphide 
(Si-PbS) 

Foss NIRSystems 
6500 

400 – 2500 Diffuse reflectance 
(remote reflectance and 
spinning cup accessories) 
 

Silicon 
(Si) 

Zeiss MMS1-NIR 
Enhanced 

300 –1100 Transmittance 
Interactance 
 

Indium Gallium 
Arsenide (InGaAs) 

Zeiss MMSNIR 800 – 1700 Transmittance 
Interactance 

 

The InGaAs and Si systems also used an interactance configuration (Ocean 

Optics bifurcated optical fibre held 1 mm from kernel surface), on intact kernels 

affected by mould, brown centres (part kernels), insect damage, decomposition, 
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germination, and discolouration.  This technique is a highly localised and useful in 

exploratory studies such as this where defect area is small in comparison to non-

affected areas. 

The Si-PbS instrument was operated using NSAS software, while the Si and 

InGaAs instruments were operated with in-house developed Labview based software.  

The NSAS default setting (average of 32 scans) was adopted in collecting each 

spectrum for the Si-PbS system, while 20 scans were averaged for the InGaAs and Si 

systems (for a discussion for signal averaging, signal to noise ratio and its effect on 

calibration model performance, see Guthrie and Walsh (1999) and Greensill and 

Walsh (2000).  Integration times were adjusted to achieve count levels above 50% of 

detector saturation (20 to 80 ms) for the InGaAs and Si systems.  

Reference analysis (Oil Concentration, Moisture, and Defect) 

Reference analysis was undertaken using a micro-soxhlet apparatus (standard 

error of +/- 3% from the mean) for oil concentration and a TGA-601 

Thermogravimetric Analyser (LECO Corporation) for moisture concentration (s.e. of 

+ 2% from the mean).  Defect samples were supplied by the commercial processor, 

and samples were assessed for defect category by staff accredited for subjective 

assessment of macadamia kernel defects by the Australian Macadamia Society. 

Chemometric analysis 

WINISI (ver. 1.5) and The Unscrambler (ver. 7.5) software packages were used 

for chemometric analyses.  Calibration models were developed using absorbance, first 

and second derivatives of absorbance, with or without scatter correction (standard 
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normal variance and / or detrend) (twelve combinations of treatments, as per Guthrie 

(1998)).  Calibration development was based on the WINISI Modified Partial Least 

Squares regression technique.   

On the population for 2004, partial least squares regressions using the 2 

variables of oil concentration (%) and kernel height (mm) singly (PLS1) and jointly 

(PLS2) as dependent variables were also undertaken using The Unscrambler (ver. 7.5) 

chemometric software package.   

Calibration performance is reported in terms of the R2 of the calibration (Rc
2), 

the R2 of a 6 group cross validation procedure (Rv
2), the root mean square of the 

standard error of the cross validation (RMSECV), and the ratio of population standard 

deviation to RMSECV (SDR). 

In the assessment of different instruments, the same population of kernels was 

presented to all instruments.  However, sample mis-presentation or signal saturation 

resulted in unequal sample numbers (Table 4).   
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Table 4. Oil and moisture PLS calibration results for 3 instruments.  
Calibration models were developed for each attribute/instrument using a 
factorial combination of derivative condition (0, 1, 2 i.e. raw absorbance data, 
first or second derivative of absorbance data), and scatter correction routines 
(standard normal variance, detrend or both (SC) with the best results reported 
here.  Calibration results are reported in terms of number of spectra, number of 
outliers removed, standard deviation (SD) of the assessed population, R2 of the 
calibration and validation populations (Rc

2, Rv
2, respectively), RMSECV and 

SDR (SD/RMSECV). 
 

Instrument Math #PC n(#outliers) SD Rc
2 Rv

2 RMSECV SDR 
Oil %-intact 

SiPbS 1 SC 7 199(7) 16.3 0.94 0.91 5.3 3.1 
Si 0 SC 11 199(19) 15.4 0.98 0.98 2.4 6.5 
InGaAs 0 SC 8 199(16) 15.8 0.99 0.99 1.7 9.3 

Moisture %-intact 
SiPbS 1 6 105(5) 0.25 0.89 0.79 0.11 2.2 
Si 2 SC 9 98(11) 0.25 0.78 0.59 0.16 1.6 
InGaAs 2 SC 4 102(4) 0.34 0.37 0.29 0.29 1.2 

Moisture %-ground 
SiPbS 1 SC 3 35(5) 0.28 0.97 0.95 0.06 4.4 
Si 2 SC 1 34(1) 0.30 0.54 0.45 0.22 1.3 
InGaAs 0 SC 2 32(1) 0.33 0.58 0.31 0.28 1.2 

 

Further, different numbers of outlier spectra – reference values were identified 

and removed from each calibration population.  Therefore comparison of Rc
2, Rv

2, and 

RMSECV between calibrations must be tempered by consideration of standard 

deviation (SD).  The standard deviation ratio (SDR) statistic, as a ratio of SD to 

RMSECV, is useful in this connection.   

To achieve a statistically valid comparison between data of populations acquired 

using 2 instrument platforms, all samples giving rejected and outlier values were 

eliminated from both population sets, and residuals used to compare RMSECV values 

at a 95% confidence interval using Fearn’s criteria (Fearn 1996).  A Microsoft Excel 

® spreadsheet was developed to implement this procedure and is available from the 

author (john.guthrie@dpi.qld.gov.au) (Appendix F).   
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The WINISI discriminant analysis routine was used in an attempt to 

differentiate spectra of whole kernels scored for soundness, rancidity and brown 

centres, and spectra of part kernels affected by insect damage, discolouration, mould 

growth, germination, and decomposition. 

RESULTS AND DISCUSSION 

Kernel Characteristics 

Immature kernels were smaller, with an average weight of only 54 and 64% of 

mature kernels, and contained only 62 and 68% of the specific oil concentration 

(%w/w) of mature kernels for populations from 2002 and 2004, respectively (Table 

1).  Thus immature kernels contained only 34 and 44% of the oil concentration of 

mature kernels (on a per kernel basis), respectively.  The mean diameter of mature 

kernels used in this study was 16.3 mm and the mean diameter of immature kernels 

was 9.6 mm.   

The current industry standard for kernel maturity is 72% or higher oil 

concentration (Ripperton et al. 1938) and (Himstedt 2002).  The supplying processor 

selected obviously mature and immature kernels for the population acquired in 2002, 

and a low error rate was achieved (only 3 classified as mature had less than 72% oil 

concentration, at 68, 69 and 70%), and none of the kernels classified as immature had 

greater than 72% oil concentration.  This selection process is reflected in the clear 

separation of means for the categories of mature and immature (76 and 46% oil 

concentration, respectively).   



 153

The assessed moisture concentrations (population 2, kernels taken through the 

drying process) varied between 1.4 and 4.2%.  These moisture concentrations are as 

expected for Australian macadamia production and processing (Himstedt 2002).   

On visual assessment, membership of the mould, decomposition, insect 

damaged, and discolouration groups appeared overlapped.  Germinating kernels were 

distinguished by a brown, orange or green coloration on the micropyle.  Insect 

damaged kernels exhibited a small discoloured and sometimes mouldy area centred on 

a wound site.  Rancid kernels were not visually distinguishable from sound kernels.   

Oil MPLS 

Calibration statistics for oil concentration models for intact kernels were 

acceptable on all instruments based on SDR (SDR > 3.0, RMSECV similar to 

reference method error).  However, the calibrations developed on the InGaAs 

instrument (SDR 9.3) were significantly (based on Fearn’s criterion) superior to that 

from the Si instrument (SDR 6.5) and from the Si-PbS reflectance system (SDR 3.1)  

(2002 population, Table 4, Fig. 1).  The population assessed in the 2004 season for oil 

concentration supported a model with higher RMSECV values than the population 

assessed in 2002.  However, the 2004 based model still had a SDR value of greater 

than 3.0 (Table 5), using both the Si and InGaAs instruments.   
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Figure 1. Regression between actual oil concentration and values predicted 
using the MPLS model for intact macadamia kernels (2002 population), based on 
spectral data from the Si (Zeiss MMS1) operated in transmission geometry and 
over the wavelength range 700 – 1,100 nm.  Regression performed on absorbance 
data, pre-treated with SNV and detrend.  Dotted lines represent 95% confidence 
interval.  Calibration statistics (from Table 4): n = 199, SD = 15.4%, Rc

2 = 0.98, 
RMSECV = 2.4%). 

 

The better performance of the InGaAs unit, relative to the Si unit, for the 

assessment of oil concentration was attributed to detection of wavelengths relevant to 

lower order overtones of the oil CH2 bond.  This advantage presumably outweighs the 

disadvantage of the more limited penetration of wavelengths above 1,000 nm and may 

indicate that the kernel is relatively homogenous in relation to oil concentration.   

The Si-PbS instrument collected data over the full 400 – 2,500 nm range, 

however reflectance optics were used.  The transmission optical path employed with 

the photo-diode instruments was presumably advantageous for this application.   
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Incorporating the height of the individual kernels in a PLS2 regression for oil 

prediction with the Si instrument showed no improvement in the calibration statistics 

for the 2004 population (PLS1 with Rc
2 of 0.94 and RMSEC 4.9% compared to the 

PLS2 result of Rc
2 0.91 and RMSEC of 6.2% oil concentration, data not shown).  This 

can be explained by the fact that the height of the kernel is already included in the 

PLS1 regression since a wide range of kernel heights (mature and immature) are in 

the population. 

For spectral data collected with the Si photodiode instrument (used in 

transmission mode), the best model performance for the attribute of oil concentration 

was achieved using absorbance spectra, treated with detrend (data not shown).  

Typical statistics for calibration models on oil were: Rv
2 = 0.98; RMSECV = 2.4% 

(Fig.1).  (McGlone and Kawano 1998) suggested that a SDR (SDR = SD/RMSECV) 

of > 3 is adequate to support sorting into 3 classes.  The SDR of > 6 reported here is 

indicative that the calibration would support a useful sorting function.   
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Calibration loadings were consistent with absorbance due to the third overtones 

of CH2 stretching (e.g. heavy weightings around 930 nm) (data not shown).   

Table 5. Calibration statistics for population 2 (2004) and prediction of 
population 2 (2004) with the population 1 (2002 model) for percentage oil.  
Calibration models were developed for the Si and InGaAs instruments using a 
first derivative of absorbance data and scatter correction routine of standard 
normal variance and detrend.  Calibration result is reported in terms of number 
of spectra, number of outliers removed, standard deviation of the calibration 
population, R2 (Rc

2), RMSECV and SDR (SD/RMSECV).  Validation results are 
reported in terms of Rv

2, RMSEP(C) and bias. 
 

Instrument Math # 
PC 

n (# outliers) SD Rc
2 RMSECV SDR  Rv

2 RMSEP(C) Bias 

Si 1:4:1 

Detrend 

3 103 (12) 14.21 0.92 4.2 3.37  0.85 5.8 94.9 

InGaAs 1:4:1 

SC 

3 110 (13) 13.50 0.92 4.0 3.34  0.79 7.3 7.8 

Moisture MPLS 

Calibration models for moisture concentration of intact kernels were not as 

reliable as those for oil concentration.  Best results were obtained with the Si-PbS 

instrument (Rv
2 = 0.79, RMSECV 0.11) (Table 4, Fig.2).   
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Figure 2. MPLS regression (calibration) for actual and predicted moisture 
concentration in intact macadamia kernels, based on spectral data from the Si-
PbS (Foss NIRSystems 6500) operated in reflectance geometry and over the 
wavelength range 700 – 1,900nm.  Regression performed on first derivative 
absorbance data, without scatter correction.  Lines represent a 95% confidence 
interval.  Calibration statistics (from Table 4): n = 105, SD = 0.25, Rc

2 = 0.89, 
RMSECV = 0.11%). 

 
Calibration model performance based on spectra acquired using the Si 

(Rv
2 = 0.59, RMSECV 0.16) (Table 4), were superior to that obtained with the InGaAs 

instrument.  The better performance of the Si, relative to InGaAs, photodiode array 

based unit is consistent with a relatively non-homogenous distribution of moisture 

concentration in the kernel, with the better relative penetration of SW-NIR (700 – 

1,100 nm) radiation, supporting a stronger calibration model.  Conversely, best results 

were obtained with the Si-PbS instrument, which was operated in a reflectance mode. 

Reflectance optics would optically sample only the surface layers of the kernel.  

These results are not consistent, and we anticipate further work to resolve this issue. 
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It was necessary to limit the number of principal components to 3 to avoid over-

fitting of data with the ground samples.  WINISI (1998) suggest 1 PC per 10 samples 

to avoid over-fitting.  Within this constraint, the Si-PbS unit (Rv
2 = 0.97, RMSECV 

0.06% moisture) (Table 4), operated with the spinning cup reflectance module, 

supported better model statistics than that obtained from intact kernels with the same 

unit, operated with a remote reflectance probe (Table 4).  This result is consistent with 

a level of non-homogeneity of moisture within intact kernels.  Grinding reduces this 

variation, and the spinning cup module allows scanning of a large proportion of the 

sample.   In contrast the predictive models developed for the Si and InGaAs units 

were relatively poor (e.g. Rv
2 < 0.5).  The transmission optics employed for the Si and 

InGaAs units with ground samples allowed spectral assessment of only a small 

proportion of the sample.  A change to this arrangement is recommended in future 

work.  

Calibration coefficients were weighted around 1,360, 740 and 840 nm (data not 

shown), consistent with absorbance due to overtones of OH stretching and 

combination. 

Discriminant Analysis  

Sound kernels and those with brown centres and rancidity could be 

discriminated from each other using principal component analysis of the spectral data 

obtained in transmission mode (Fig. 3).   

Part kernels affected by insect damage, discolouration, mould growth, 

germination, and decomposition could be discriminated from sound kernels (Fig. 4).  

However, discrimination among these defect categories was not distinct and could not 

be validated on an independent population (data not shown).   
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Figure 3. Discriminant analysis (PCA) of whole macadamia kernels using 
the InGaAs (Zeiss MMSNIR) in transmission mode.  Plot uses the first 3 
principal components. 

 

 

Figure 4. Discriminant analysis (PCA) of macadamia kernels using the Si 
(Zeiss MMS1) in interactance mode.  Plot of the last 3 (fifth, sixth, seventh) 
principal components. 

 

This was probably due to the overlapping of defect categories (e.g. decomposed 

also exhibited discolouration and possibly mould growth).  This study was also based 

on relatively low sample numbers, and further replication is recommended. 
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Oil model robustness 

A calibration model developed from season 2002 kernels performed poorly in 

prediction on kernels acquired in season 2004, (RMSEP of 94.9 and 10.7% oil 

concentration for the Si and InGaAs instruments, respectively) but the error was 

predominantly due to the large bias (94.9 and 7.8 % oil concentration for the Si and 

InGaAs instruments, respectively; Table 5).  Updating of the calibration developed 

with the 2002 kernels with fewer than 10 samples chosen randomly (Guthrie et al. 

2005b) from the 2004 kernels resulted in both the RMSEP and bias being similar to 

the results of the 2004 calibration model (Fig. 5).   
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Figure 5. Prediction statistics (root mean square error of prediction 
(RMSEP) and bias) for modified partial least square (MPLS) prediction models 
for oil concentration of intact macadamia kernels, using an independent (of the 
calibration population) validation population with 2 instruments (Si detector 
instrument, closed square; InGaAs detector instrument, open square).  The 
average Mahalanobis Global H statistic (GH) of samples in the validation 
population was calculated using calibration model scores.  The initial calibration 
population consisted of the population assessed in 2002.  Samples were selected 
randomly from the prediction population (population assessed in 2004) for 
addition to the calibration population.   
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CONCLUSION 

The low cost Si photodiode array instrument achieved a RMSECV of 2.4 and 

4.2% on oil concentration of intact kernels over 2 separate seasons, respectively.  

However, contrary to the expectation that prediction of oil concentration would be 

more robust than prediction of sugar, prediction of the second season’s kernels with a 

calibration developed in the first year was poor.  This low moisture product also 

benefited from the model updating procedure outlined in Guthrie et al. (2005b).  

Model updating involving addition of 10 samples or less supported prediction results 

which were comparable with the second season’s prediction on itself.   

The Si photodiode instrument achieved a RMSECV of 0.2% on moisture 

concentration of ground kernels, and also allowed discrimination between kernels 

affected with a number of defects.   

This study has shown encouraging results indicating that this technology should 

prove useful to the processing industry as an assessment tool of some quality 

attributes both in the processor laboratory and in-line.  Further work should consider 

optical configurations to optimise sampling of the product, and also the robustness of 

the calibration models across different growing districts, cultivars and times of 

harvest.   
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7 
CONCLUSIONS AND FUTURE 

RESEARCH 
 

The potential of NIR spectroscopy to assess internal quality attributes, notably 

TSS, of intact fruit is well established in the literature.  However, the practical 

application of this technology for the sorting of intact fruit in commercial packing 

sheds will be limited by the robustness of the prediction models.  Many of the 

literature reports of model development have been restricted to calibration exercises, 

and have therefore been limited because of the lack of true validation (i.e. validation 

of the calibration model on a population truly independent of the calibration 

population).  Robustness should be defined in terms of the ability of the model to 

predict accurately across populations differing in time, cultivar/variety and growing 

district.   

This thesis has characterised hardware options, scanning position (as determined 

by commodity attribute distribution) and chemometric approaches (with regard to 

optimum spectral window, data pre-treatment and regression techniques) for the 

application of TSS assessment of intact fruit, from the viewpoint of model robustness 

rather than straight calibration model performance.  The utility of relatively 

inexpensive SW-NIR Si PDA spectrometers for this application was confirmed.  

Partial least squares regression models were demonstrated to be superior to either 

MLR or ‘local’ PLS models as used in the WINISI chemometric software 
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package.  It is recommended that the optical configuration employed be varied 

between commodities, with thin skinned produce of relatively homogenous 

composition requiring a different arrangement to that for thick skinned produce, or 

produce with heterogenous composition.   

However, while the hardware and chemometric approaches were optimised, 

model robustness across new populations remains a performance issue.  Robustness of 

prediction models on independent populations was most impacted by growing season, 

relative to locality of production, variety or time of harvest.  

A simple model updating procedure was proposed to accommodate the 

variations introduced by the new populations.  It was recommended that model 

updating by the addition of between 10 and 30 samples chosen randomly from the 

new population be undertaken when the average GH of the new set (calculated using 

the scores and loadings of the model developed on the calibration population) exceeds 

1.0.  Further work is required to establish the number of added samples required in 

relation to population size, both in relation to new populations of fruit and sample 

temperature.  The NH statistic as advocated by WINISI can be used to winnow the 

calibration population, maintaining a relatively compact population size, without loss 

of prediction accuracy (e.g. see Appendix C). 

The model updating procedure used was, however, relatively labour intensive.  

To support commercial application it is possible that the model updating could be 

undertaken automatically by software.  In such software, if the average GH of the 

predictions were to exceed 1.0, 20 samples for which spectra and reference values 

(e.g. %TSS) were available, randomly selected from the available population, would 

be merged with the calibration population and the PLS calibration model regenerated.  

Matlab and PLS Toolbox (Eigenvector) are appropriate packages for such a task. 
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Thus a hardware (Si photodiode array/halogen lamp) and statistical (PLS) 

solution to the application of fruit grading has been characterised.  Significant 

performance improvements, however, are likely to come from changes to different 

types of hardware and statistical solutions, rather than incremental improvements to 

the existing solution.  For example, Butz et al. (2001) advocated the use of diode 

lasers operating in the SW-NIR as illumination sources.  They reported on the use of 

multiple 50 milliwatt laser diodes operating at SW-NIR wavelengths for the 

assessment of TSS and firmness of apples, although method robustness was not 

considered.  The Japanese company Sumitomo commercialised such technology for 

fruit sorting in the 1990s’, claiming reduced calibration transfer problems and 

increased model robustness.  However, this unit is apparently no longer commercially 

available.  It is likely that power stability/temperature control/laser output stability 

and safety issues presented significant technical hurdles. 

Fourier transform near infra-red spectroscopy (FTNIR) is another technology 

that holds promise, with claims that model transfer between instruments is 

straightforward.  This feature is ascribed to high wavelength resolution, and the use of 

a single detector.  However, model transfer between instruments is a different issue to 

model robustness across new populations, and this issue deserves study for the 

application of the assessment of internal quality attributes of fruit.  Further, the 

technology is based on a Michelson interferometer, involving use of a moving part 

and a discrete time interval in wavelength scanning.  Thus the applicability of the 

technology to the sorting of fruit on a pack-line (at 10 pieces per second, in a vibrating 

environment) should also be considered.   

Raman spectroscopy is another technique, generally considered as 

complimentary to FTIR/NIR spectroscopy as it probes fundamental molecular 
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vibrational transitions rather than overtones and combination bands.  The potential of 

this technique to assess low levels of specific compounds in fruit should be assessed 

(e.g. pesticide or fungicide residues in dried, ground samples). 

Partial least squares regression became available in the 1970s, and has been 

adopted as the chemometric method of choice by the NIR community, supplanting 

MLR.  Other methods have been proposed, and may eventually supplant PLS for the 

application of fruit sorting.  For non-linear applications, neural network and genetic 

algorithms have proven superior to PLS, but for the application of fruit sorting on 

TSS, these techniques yield results generally equivalent to, or inferior to, PLS.  Least 

squares support vector machine (SVM) is another non-linear approach which has 

recently been promoted for use in chemometrics.  Cogdill and Dardenne (2004) report 

that for the prediction of apple sucrose concentration from SW-NIR spectra, SVM 

outperformed neural networks, local PLS and MPLS (RMSEP’s of 0.32, 0.33, 0.34 

and 0.37% TSS, respectively).  Unfortunately model robustness was not considered, 

although it was noted that the power of this method to model non-linear functions 

could easily result in model over-fitting, and consequent poor predictive performance.  

This technique deserves further consideration for this application. 

It is also likely that NIRS will be used in the future for prediction of more 

‘complex’ attributes than average TSS or DM concentration.  Examples include the 

detection of insect presence or damage (see Appendix D), internal discolouration 

(Chapter 6) or predicted shelf life of foods.  Near infra-red imaging also offers 

potential for in-line food processing and in production agriculture. 

Finally, the adoption of a new technology is constrained by many factors.  At a 

superficial level, one might expect the ability to sort fruit for eating quality (TSS 

level) at an affordable price would be rapidly adopted.  However, the implementation 
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of such a capability can be disruptive to existing procedures, constraining uptake.  

Parallel research is therefore required into breeding (for varieties producing sweeter 

fruit), agronomic technique (learning to grow sweeter fruit), consumer preferences, 

human health related issues, et cetera.
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APPENDIX A 

INFLUENCE OF ENVIRONMENTAL AND 
INSTRUMENTAL VARIABLES ON THE NON-
INVASIVE PREDICTION OF BRIX IN 
PINEAPPLE USING NEAR INFRARED 
SPECTROSCOPY6 

ABSTRACT 

The Brix content of pineapple fruit can be non-invasively predicted from the 

second derivative of NIR reflectance spectra.  Correlations obtained using a 

NIRSystems 6500 spectrophotometer through MLR and MPLS analyses using a post-

dispersive configuration were comparable to that from a pre-dispersive configuration 

in terms of accuracy (e.g. coefficient of determination, R2, 0.73; standard error of 

cross validation, SECV, 1.01 °Brix).  The effective depth of sample assessed was 

slightly greater using the post-dispersive technique (ca. 20 mm for pineapple fruit), as 

expected in relation to the higher incident light intensity, relative to the pre-dispersive 

configuration.  The effect of such environmental variables as temperature, humidity 

and ambient light, and instrumental variables such as the number of scans averaged to 

form a spectrum, was considered with respect to the accuracy and precision of the 

measurement of absorbance at 876 nm, as a key term in the calibration for Brix, and 

predicted Brix.  

                                                 

6 This appendix has been published in: Australian Journal of Experimental Agriculture, 1999, 39, 73-
80, under the title: ‘Influence of environmental and instrumental variables on the non-invasive 
prediction of Brix in pineapple using near infrared spectroscopy’.  Authors were J.A. Guthrie and K.B. 
Walsh. 
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The application of post-dispersive near infrared technology to in-line assessment of 

intact fruit in a packing shed environment is discussed. 

Keywords: 

Ananus comosus, Brix, fruit quality, humidity, pre-dispersive, post-dispersive, 

scans, temperature 

INTRODUCTION 

Near infrared spectroscopy (NIRS) is widely used for the identification of 

organic compounds, and has found increasing use for the non-invasive quantification 

of organic constituents within biological material.  For example, the technique is 

widely used in the Australian grains, forage and oil seeds industry (e.g. assessment of 

protein and moisture contents).  In Japan (Mitsui Mining and Smelting Corp., Omiya, 

and Maki Manufacturing Co., Hamamatsu) commercial in-line near infrared sensors 

are being used in packing sheds to assess the sweetness, ripeness and acidity of 

relatively smooth and thin skinned temperate fruits (citrus, apples, pears and peaches), 

at three pieces per second per lane (Kawano 1994).  These units are not commercially 

available in Australia. 

The thick, rough skin of pineapple fruit is expected to compromise the 

application of the technique to the assessment of Brix in this fruit.  Shiina et al. (1993) 

and Guthrie and Walsh (1997, 1998) have reported the development of calibrations 

for Brix in pineapple fruit, under laboratory conditions.  The error of prediction 

(SEP), however, was higher in these studies than those reported for thin skinned fruit. 

The application of the NIRS technique to the prediction of pineapple Brix in a 

packhouse setting, as opposed to a laboratory setting, will involve additional sources 

of error.  For example, the ability of a NIR spectroscopic system to predict the Brix of 
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fruit will be influenced by the effect of environmental parameters (e.g. light, 

temperature, humidity) of the sample on the NIR spectrum (a spectroscopic problem), 

by characteristics of the illumination system (e.g. effective depth of fruit from which 

information is acquired, use of ‘white’ or monochromatic incident light), by the effect 

of environmental parameters such as temperature and humidity on the instrument, and 

by performance characteristics of the spectrometer (e.g. signal : noise characteristic, 

reflecting mechanical considerations such as grating positioning, electronic 

considerations such as detector dark current and A/D conversion of data and optical 

considerations such as stray light within the spectrometer).  The post-dispersive mode 

should offer advantages over the pre-dispersive mode with in-line applications 

because light intensity is lost in passage over the diffraction grating (for a concave 

holographic grating, as used in the NIRSystems 6500, maximum light transmission is 

typically 30% at the blaze wavelength).  Thus the post dispersive system has the 

advantage of delivering a higher intensity of all wavelengths onto the sample, 

improving the effected depth of penetration into the sample.  Also, external light 

around the sample will have less effect on the detector response.  While NIRS is in 

commercial use in Japan, there is little published consideration of the effect of such 

variables for the prediction of fruit quality attributes.  In this study, we consider the 

influence of these parameters on the assessment of pineapple fruit Brix, with a view to 

the application of NIRS to the sorting of pineapples for Brix content in an in-line 

setting. 
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MATERIALS AND METHODS 

Plant material and constituent analysis 

The pineapples (Ananas comosus [L] Merrill, var. Smooth Cayenne) used in the 

experiment were grown commercially on a Yeppoon, Central Queensland farm, and 

transported to the laboratory on the day of harvest.  Spectra were acquired after 

sample temperature equilibration and within 3 days of harvest, in an air-conditioned 

laboratory at 22-24oC.  After scanning, a 60 mm diameter stainless steel corer was 

used to excise both skin and underlying flesh to a depth of 20 mm.  The skin was 

subsequently removed and the flesh squeezed manually through a nylon cloth to 

extract the juice.  The extracted juice was measured for Brix content using an Erma 

digital refractometer (accuracy +/- 0.2 °Brix). 

Near infrared spectrometry 

A scanning monochrometer (Model 6500, NIRSystems, Silver Springs, MD, 

USA) driven by NSAS software (Version 3.3, NIRSystems) was used in 2 

configurations.  In the ‘pre-dispersive’ configuration, light from a 75 W tungsten 

halogen lamp passes through a slit and is dispersed by a moving grating.  The 

dispersed light passes through order sorting filters, with the primary spectrum 

delivered via a 1.6 m fibre optic cable to a remote reflectance probe (Fig. 1).  Thus 

monochromatic light is incident on the sample, and detectors in the probe (mounted at 

45° to the sample surface) monitor the intensity of reflected light.  In the ‘post-

dispersive’ configuration, light from a 75 W lamp directly illuminates the sample, and 

light returning from the sample is delivered via a 1.6 m fibre optic to a spectrometer 
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(Fig. 1).  Light passing a slit is dispersed by a moving grating, and is delivered 

through order sorting filters onto the detectors (positioned normal to the incident 

beam).   

The protocols of Guthrie and Walsh (1997) for pre-dispersive work were 

adopted.  Briefly, intact fruit were held in a light-proof poly vinyl chloride (PVC) box 

with a 60 mm diameter window.  A laboratory jack held the fruit against the window 

so that the fruit skin was in direct contact with the quartz glass window of the 

NIRSystems remote reflectance probe.  The same population of pineapple fruit was 

then scanned with the direct light NIRSystems 6500, with lamp and fibre optic 

positioned 7 cm above the intact fruit.  In both configurations, spectra were obtained 

at the centre of the fruit’s longest dimension, from each half of the fruit (i.e. 2 spectra 

per fruit), and reference scans were undertaken between each sample spectrum, using 

a white ceramic tile as the reference.  
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Figure 1  Schematic diagram of sample presentation to pre- and post-
dispersive instrument configurations (NIRSystems 6500).  (A) Remote 
reflectance fibre optic probe employs monochromatic light generated by a 
scanning monochromator conveyed via a fibre optic bundle (a).  Light leaves the 
fibre optic, radiates at 22° (a function of the numerical aperture of the fibre), 
passes a slit (b) and a quartz glass window (c) before interacting with the sample 
(d).  The direction of incident light is perpendicular to the sample surface.  
Diffusely reflected radiation (e) is measured by detectors (f) mounted at 45° to 
the sample surface.  Two lead sulphide detectors and one silicon detector are 
mounted on each side of the incident light slit.  The sample (d) was positioned 
adjacent to the quartz glass window (c).  (B) Direct light sensing head employs 
white light generated by a 75 W tungsten halogen lamp (a).  The incident white 
light (b) was directed at the sample surface (d) immediately under the fibre optic 
(f).  The sample was positioned 7 cm from the quartz glass window (c).  Diffusely 
reflected light (e) was conveyed via the fibre optic (f) to a scanning 
monochromator and detector system.  A ceramic reference (g) is pneumatically 
positioned under the lamp and fibre optic between sample measurements.  
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Calibration development 

Calibration equations were developed on second derivative spectral data using 

multiple linear regression (MLR) and modified partial least squares (MPLS) analysis 

with ISI (version 3.0) software.  Spectral and Brix analyses were obtained for 208 

samples (mean 15.44, range 11.9 - 20.4, s.d. 1.74 oBrix).  In the MPLS calibration 

procedure, the population was partitioned into 6 subgroups, with each group 

sequentially used as a predicted group and the remainder as a calibration group (such 

that every sample is predicted once).  In contrast, in the MLR procedure, the 

population was divided into equal groups for use as calibration and prediction sets.   

Two procedures were used in dividing the population for the MLR procedure.  

In the rectangular ('boxcar') distribution method for analyte concentration, the 

population was first ranked into groups varying by 1°Brix, and then 14 samples (if the 

division had less than 14, all were used) were taken from each group to make the 

calibration set.  In this method the calibration set is equally weighted for samples 

across the full Brix range of the population, although the remaining prediction set is 

overweighted with samples about the mean.  In the 'sequential' method, samples were 

ordered in ascending Brix values, then sequentially paired and a value from each pair 

randomly split into either calibration or prediction sets.  In this procedure both sets are 

equally weighted for the range of Brix levels present in the population. 

Instrumental and environmental variables 

The noise within a spectroscopic condition was characterised with respect to 

absorption at 876 nm and the predicted Brix value of the assessed fruit.  Absorbance 
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at 876 nm was chosen, as the derivative of absorbance at this wavelength was 

important in the calibration (MLR, pre-dispersive) developed for pineapple Brix 

(Table 1).  Absorbance values at 876 nm were averaged, and the average divided by 

the standard error as an estimate of the signal : noise ratio.   

Number of Scans 

The ‘default’ option used on the NIRSystems 6500 was to average the spectra of 

50 scans per spectrum acquired.  With each scan taking about 1 s, spectrum 

acquisition therefore requires about 1 min.  A fewer number of scans are expected to 

decrease the signal : noise ratio of the measurement.  This effect was studied by 

collecting 5 spectra of a sample (intact pineapple) with paired reference spectra, using 

either 1, 2, 4, 8, 16, 32, or the maximum allowed, 50 scans per spectra.  

External Light 

To consider the influence of light, spectra were acquired using the pre-

dispersive system under the following 4 conditions: (i) ‘standard’ practice (e.g. as 

used by Guthrie and Walsh, 1997), with the remote reflectance fibre optic probe 

sealed close to the object of interest (a pineapple fruit) in a light proof box; (ii) the lid 

of this box left open within a room with windows in which the fluorescent overhead 

lights were turned off; (iii) the lid of the box left open, with room fluorescent lights 

on; and (iv) a tungsten halogen floodlight directed at the open box.  Similarly, spectra 

were acquired using the post-dispersive system under the following 4 conditions: (i) 

darkness; (ii) room with unshuttered windows; (iii) room with fluorescent lights on; 

(iv) floodlight directed at the fruit.  Spectra were acquired at 2 locations on 5 fruit (10 

spectra) for each of these conditions, for both the pre- and post-dispersive systems.   
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Depth of sample assessed 

The effective depth of the sample from which diffusely reflected light was 

acquired was estimated using the pre- and post-dispersive configurations.  Spectra 

were acquired of filter paper (Whatmans No. 42 – 18.5 cm diameter) soaked in 10% 

w/v sucrose, within a petri plate on a teflon background.  The number of filter papers 

was varied between 1 and 20.  In an alternative consideration, spectra were collected 

from 10 pineapple fruit in which flesh was sequentially trimmed from the side away 

from the skin surface facing the NIRS probe. 

Table 1. MLR and MPLS based calibration of NIRS and pineapple Brix 
level.  Results are summarised for two protocols for the partitioning of a 
population into prediction and calibration sets (boxcar and ranked sequentially) 
for the MLR procedure. 

 

 Pre-dispersive Post-dispersive 
   

MLR - boxcar calibration (760 - 1300 nm) 
Calibration   

n 105 105 
wavelengths (nm) 740, 764, 788 1188, 708 

R2 0.740 0.705 
SEC 1.155 1.219 

Prediction   
n 103 103 
R2 0.28 0.38 

SEP 1.49 1.29 
   

MLR- ranked sequential  760 - 1300 nm) 
Calibration   

n 104 104 
wavelengths (nm) 876, 764 1188, 1244, 708 

R2 0.650 0.652 
SEC 1.055 0.992 

Prediction   
n 104 104 
R2 0.50 0.50 

SEP 1.36 1.30 
   

MPLS - 6 cross validation groups  (760-2300 nm) 
   

n 208 208 
number of terms 4 3 

R2 0.642 0.728 
SEC 1.060 0.876 

SECV 1.112 1.011 
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Temperature and humidity 

To consider the effect of temperature, 5 fruit were varied in temperature 

between 2 and 60oC, and spectra acquired using both systems (instruments held at 22-

24oC).  Fruit temperature was measured using a thermocouple placed under the skin 

of the fruit.  Reference spectra (ceramic) were taken at laboratory temperature.  In a 

parallel experiment, relative humidity of the environment of the remote reflectance 

probe and sample was varied, and spectra acquired.  Reflectance probe and sample or 

spectrometer were enclosed within a cabinet and the humidity decreased by 

recirculating air through a cold trap, and increased by introducing steam into the 

recirculating air supply, and monitored using a ‘Tinytag’ datalogger.  

The effect of humidity was also considered with respect to the instrument.  In 

this experiment, the instrument was housed in the chamber in which humidity was 

altered, and the probe and sample maintained under ambient laboratory conditions 

(i.e. constant humidity and temperature). 

RESULTS AND DISCUSSION 

Calibration for pineapple Brix 

MLR calibrations developed using post-dispersive analysis were equivalent to 

those using pre-dispersive analysis in terms of calibration and prediction regressions 

(Table 1).  For the MPLS-based calibrations, post-dispersive analysis yielded a 

superior result to the pre-dispersive analysis, in terms of coefficient of determination 

(R2, standard error of calibration (SEC) and standard error of cross-validation (SECV) 

(Table 1).  Coefficients of determination of 0.73 and 0.64, achieved using post- and 

pre-dispersive analyses, respectively, will allow grading of articles into 3 grades at a 
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success rate of 70% and 65% respectively (Shenk and Westerhaus, 1993).  High and 

low samples will be correctly identified with a success rate of 99% and 100%, 

respectively.   

 

Figure 2 (a) Absorbance and (b) second derivative of absorbance at 3 
wavelengths  ( ■ 876 nm, ▲  992 nm, ♦1216 nm) plotted against the number of 
layers of filter paper soaked in 10% sucrose solution.  Measurements were made 
using a pre-dispersive system. 

 
Two procedures were used for the selection of calibration samples from the 

overall population for the MLR (Table 1).  The ‘boxcar’ selection procedure gave a 

more uniform weighting across the range of Brix levels than the sequential selection 

procedure.  This resulted in a superior R2 for calibration, in comparison with the 

‘sequential’ method.  However, this protocol depleted the number of samples in the 

prediction set at the extreme ends of the range.  In consequence, the R2 and SEP of the 

prediction set were inferior in the ‘boxcar’, relative to the ‘sequential’, procedure.   

Brix content was predicted for a population of fruit harvested in 1996 (Tables 2 

and 3; Figs. 3-5) using calibration equations developed from a previous growing 

season (1995, Table 1) for both pre-and post-dispersive systems.  The predictions 

were reasonably precise but inaccurate, with an offset of 1 and 6°Brix for the pre- and 

post-dispersive systems respectively.  This result confirms the need to develop robust 

calibrations across growing seasons (Guthrie et al. 1998). 
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The signal : noise ratio for A876 (as indexed by the ratio of mean to standard 

error for 5 measurements, Tables 2 and 3) was lower in the pre-dispersive, relative to 

the post-dispersive, system.  We consider that this result is largely due to differences 

in the position of the ceramic reference, which was scanned between each sample.  In 

the pre-dispersive system the reference was placed in the same position as the sample, 

whereas in the post-dispersive system the reference was built into the direct light 

head, which was held 7 cm above the sample.   

 

Figure 3. Predicted Brix of pineapple fruit, as a percentage of that predicted 
at 70-75 mm.  Slices were cut from each fruit (on the side away from the light 
source and detector) between each measurement.  Predictions were made using a 
pre-(♦) and post ( ■ ) dispersive system, with calibrations reported in Table 1.  
Each data point represents the mean of 10 separate fruit with an associated 
s.e.m. 
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Table 2. Effect of varying external light conditions on absorbance (876 nm) 
and predicted Brix of pineapple fruit assessed using a pre- or post-dispersive 
system.  Date presented as mean (n = 10) and mean/s.e. as an estimate of the 
signal : noise ratio.  Values in parentheses are expressed as a percentage of the 
dark value. 

 

Light 
conditions 

Pre-dispersive Post-dispersive 

 Mean Mean/s.e. Mean Mean/s.e. 

 Absorbance (876 nm) 
Dark 0.1394 648 0.8832 2331 

Ambient 0.1381 631 0.8820 2333 
+ Fluorescent 0.1366 353 0.8791 2819 
+ Floodlight 0.0413 4 0.8486 2392 

 Predicted Brix (°Brix) 
Dark 19.7 

(100) 
263 14.8 (100) 18.7 

Ambient 19.7 
(99.8) 

272 13.2 (89.1) 13.2 

+ Fluorescent 20.9 
(101.2

) 

314 13.9 (94.7) 19.1 

+ Floodlight 17.7 
(89.6) 

37 14.7 (98.9) 14.0 

Table 3. Effect of varying number of scans averaged for each spectrum on 
absorbance and predicted Brix using a pre- and post-dispersive system.  Data 
presented as mean and mean/s.e. for the absorbance data and as mean and s.e. 
for predicted Brix date (n = 5).  Values in parentheses are expressed as a 
percentage of 50 scans. 

 

Pre-dispersive Post-dispersive No. 
of 
sca
ns 

Mean Mean/s.e.
or s.e. 

Mean Mean/s.e.
or s.e. 

 Absorbance (876 nm) 
1 0.0928 

(92.7) 
41 0.825 

(100) 
1761 

2 0.0974 
(97.2) 

209 0.826 
(100.0) 

2611 

4 0.0971 
(97.0) 

348 0.826 
(100.1) 

5449 

8 0.097 
(96.9) 

321 0.826 
(100.1) 

5782 

16 0.085 
(98.3) 

315 0.826 
(100.1) 

10323 

32 0.0997 
(99.6) 

448 0.826 
(100.1) 

5065 

50 0.1002 
(100) 

537 0.826 
(100.0) 

5024 

 Predicted Brix (°Brix) 
1 20.6 

(97.8) 
0.38 9.3 

(72.2) 
3.9 



195 

2 21.2 
(100.4) 

0.22 8.0 
(64.9) 

2.2 

4 21.0 
(99.7) 

0.20 15.7 
(124.1) 

2.9 

8 21.1 
(99.8) 

0.19 14.3 
(113.3) 

1.6 

16 21.2 
(100.4) 

0.15 13.5 
(105.7) 

1.6 

32 21.0 
(99.6) 

0.05 14.1 
(119.4) 

0.8 

50 21.1 
(100.0) 

0.06 12.7 
(100.0) 

0.7 

 

In consequence, the absorbance measured in the post-dispersive system was 

much higher than that measured in the pre-dispersive system.  Given absorbance is a 

logarithmic scale, the post-dispersive system is expected to give a higher signal : 

standard error ratio (but at the expense of signal resolution). 

Penetration 

Spectra were acquired of filter paper soaked in 10% (w/v) sucrose using the pre-

dispersive configuration (Fig. 2).  Maximum separation of absorbance (actually 

reflectance) spectra occurred at 992 and 1,216 nm, while absorbance at 876 nm was 

considered as a wavelength of significance in the pineapple Brix calibration (MLR 

pre-dispersive, Table 1).  Absorbance at 992 and 1,216 nm increased with number of 

layers, reaching a plateau at about 6 layers (6 mm thickness of paper layers).  

Absorbance at 876 nm demonstrated little relationship to number of layers, suggesting 

a greater penetration of the sample by the wavelengths 992 and 1,216 nm.  The initial 

slope of the relationship between absorbance and number of layers is related to the 

extinction coefficient of the sample.  

As absorbance data is prone to spectral baseline shifts due to changes in sample 

surface reflectance, first or second derivative data are generally used in calibration 

exercises.  The second derivative term is negatively correlated with the concentration 
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of the analyte absorbing at that wavelength, to the extinction coefficient of the 

analyte, and to the pathlength (from Beer’s Law).  As expected, the second derivative 

of spectra provided more information about the sample.  Depending on wavelength, 

spectral information was obtained from a depth of 10-20 mm of filter paper.  The 

decrease in the second derivative of absorbance at 992 and 1,216 nm, stabilising at 

about 10 layers (10 mm) can be explained by the absorbance of sucrose, water or 

cellulose at these wavelengths (i.e. to increasing numbers of paper layers).  The 

increase in the second derivative of A876 stabilising at about 20 layers (20 mm) 

indicates that this term is negatively correlated with the analyte (in this case, number 

of paper layers).  Similar data were obtained using the post-dispersive system (data 

not shown). 

In an alternative approach to the question of the effective depth of the sample 

from which diffusely reflected light was acquired, Brix was predicted for fruit of 

varying slice thickness.  Using the pre-dispersive configuration, the predicted Brix on 

a slice of pineapple fruit only 10 mm thick was not different to that of thicker slices of 

fruit (Fig. 3).  Using the post-dispersive configuration, the predicted Brix of pineapple 

increased with fruit thickness up to about 20 mm.  There was more noise on post-

dispersive estimation of Brix.  The temperature of the fruit will have increased during 

the prolonged exposure to high light intensity in this experiment.  Temperature will 

affect the wavelength at which maximum absorption occurs for a given chemical 

bond, and thus the accuracy of a Brix prediction.  However, the standard error of the 

prediction did not consistently increase with the time of exposure (i.e. as fruit was 

sliced and thickness decreased, Fig. 3) and thus change in temperature does not 

explain this effect.  The consistent decrease on the pre-dispersive estimate with 

increasing thickness of fruit could be explained by reflection from the teflon 
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background back into the fruit, although this trend was not apparent in the post-

dispersive data.   

The post-dispersive mode offers the advantage of a higher incident light 

intensity relative to the pre-dispersive mode, because of the loss of intensity with 

passage of light through a slit and over a diffraction grating in the pre-dispersive 

mode.  If incident light intensity was doubled, the number of photons at all levels 

within the fruit will be doubled, improving the signal to noise of the diffusely 

deflected radiated light and increasing the effective depth of sample for which useful 

spectral information is acquired.  Therefore the diffusely reflected light should contain 

more relevant information about the internal composition of the fruit (i.e. flesh Brix).   

External light effects 

The pre-dispersive system is expected to be more sensitive to stray light 

entering the detector than the post-dispersive system.  When using the post-dispersive 

system, A876 was not affected by background light levels (even a flood light, Table 2).  

In contrast, the signal : noise ratio of measurements made using the pre-dispersive 

system were significantly decreased by increasing external light levels. 

The use of second derivatives should remove the effect of (constant) external 

light on the absorbance spectra with respect to the calibration for fruit Brix, although 

only if this a external light is spectrally ‘neutral’ (i.e. its influence is constant over that 

part of the spectrum of importance to the calibration).  The mean and standard error of 

the predicted Brix of fruit assessed with the post-dispersive technique was not 

significantly altered by external light levels.  The mean and standard error of 

predicted Brix of fruit assessed with the pre-dispersive technique was affected by the 

tungsten halogen floodlight, but not by fluorescent lighting.  These results were 
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expected as fluorescent light sources do not produce light of wavelengths relative to 

the Brix calibration, and the presence of additional white light from a tungsten 

halogen source should affect the pre-dispersive technique adversely. 

Temperature 

Kawano et al. (1995) has emphasised the need to incorporate samples over the 

range of temperatures expected in an operational setting within a calibration exercise.  

The calibrations reported in Table 1 were developed over a narrow temperature range 

(22-24°C).  As the temperature of the fruit increased so did the predicted Brix values 

for the pre-dispersive configuration (Fig. 4).  However, predictions for the post-

dispersive configuration showed no consistent trend (Fig. 4).  The increased light 

intensity on the sample inherent with the post-dispersive system adds a heat load to 

the sample.  Fruit temperature (as monitored by a thermistor placed 10 mm under the 

skin surface) increased by about 2°C over the scanning period.  However, this effect 

will be similar in both calibration and prediction samples and therefore does not 

explain the result. 

Incorporation of a range of sample temperatures into a calibration equation, as 

suggested by Kawano et al.  (1995), will reduce the accuracy and precision of the 

prediction.  Alternatively, calibrations could be developed for a series of temperature 

ranges, to cover the expected sample temperatures.  Temperature of the fruit sample 

was predicted reasonably accurately using either pre- or post-dispersive 

configurations (Fig. 4, R2 = 0.97 and SEC = 2.3° Brix; R2 = 0.97 and SEC = 2.7° 

respectively).  Such a temperature prediction could be used to select a relevant 

calibration equation. 
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Figure 4. (a) Predicted Brix of 5 separate fruit over a range of temperatures 
using a pre- and post-dispersive system.  (b) Fruit temperature was predicted 
from spectra.  For the pre-dispersive system ( ) a calibration R2 = 0.97, SEC = 
2.3 and SECV = 3.0°C was achieved.  For the post-dispersive system (●) a 
calibration R2 = 0.97, SEC = 2.7 and SECV = 3.4°C was achieved. 
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Figure 5. (a) A876 and (b) predicted Brix of pineapple fruit over a range of 
humidities.  Humidity was varied in the vicinity of the sample and remote 
reflectance probe, with a reference value taken at 57& relative humidity only (●).  
The sample and remote reflectance probe were maintained under constant 
conditions while the spectrometer was subjected to varying humidities and either 
reference taken at one humidity level only (■) or taken paired with each sample 
(▲). 

Relative Humidity 

Increasing the humidity of the sample environment, while temperature was held 

constant, had minimal effect on the predicted fruit sample Brix value using the pre-

dispersive system (Fig. 5).  However, when the instrument (i.e. monochromator) was 

subjected to a range of humidity values, the predicted Brix values were more erratic 

than in the former situation.  This result could be caused by the light scattering effect 
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of water droplets on the incident radiation.  Re-referencing between samples, at the 

prevailing humidity, served to improve the precision of the Brix prediction. 

Number of scans per spectrum 

As noted with external light effects, predicted Brix was inaccurate, and the 

difference in the A876 mean/s.e. estimate between pre- and post-dispersive systems is 

interpreted as largely due to the position of the reference (Table 3).  The mean/s.e. 

ratio of both A876 and predicted Brix improved with the number of scans averaged for 

each spectrum in both systems.  A standard error of less than 1° predicted Brix was 

achieved with only 1 scan in the pre-dispersive system, while 32 or more scans were 

required with the post-dispersive system to achieve the same result.  The time 

required to acquire each spectrum is a limitation to the adoption of NIRS technology 

into pack house settings.  Fruit packing lines currently sort fruit at rates in excess of 1 

item per second (typical belt speed 1 m/s).   

CONCLUSION 

The use of a NIR-based technology for the sorting of fruit in a packing shed 

requires a robust and rapid technology, ‘tolerant’ of changes in temperature and 

humidity, and capable of assessment of at least 2 pineapple fruit per second.  A post-

dispersive optical configuration is recommended over a pre-dispersive system to 

increase the incident light intensity on the sample (i.e. to assess a greater depth of 

fruit) and to decrease sensitivity to stray white light.  A detector array (CCD or 

photodiode) rather than a scanner grating and a single detector is required to decrease 

analysis time.  These 2 features are seen in prototype ‘bench top’ NIRS units for Brix 
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assessment of kiwifruit (Osborne et al. 1998), peach (Jaenisch et al. 1990), melon 

(Matumato et al. 1996) and apple (Bellon et al. 1993). 

The influence of relative humidity on prediction can be addressed by re-

referencing as humidity changes, or by enclosing the spectrometer.  The influence of 

sample temperature on prediction accuracy is suggested to be best addressed by 

predicting temperature by using NIRS, and applying a calibration developed for this 

temperature.  Consideration should also be given to the effect of temperature changes 

on the spectrometer.  We are currently undertaking further work to integrate a post-

dispersive array system into a commercial fruit packing shed. 
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APPENDIX B 

ROBUSTNESS OF NIR CALIBRATIONS FOR 
SOLUBLE SOLIDS IN INTACT MELON AND 
PINEAPPLE7 

ABSTRACT 

The soluble solids content of intact fruit can be measured non-invasively by 

near infrared spectroscopy, allowing ‘sweetness’ grading of individual fruit. However, 

little information is available in the literature with respect to the robustness of such 

calibrations.  We developed calibrations based on a restricted wavelength range (700-

1100 nm), suitable for use with low-cost silicon detector systems, using a stepwise 

multiple linear regression routine.  Calibrations for total soluble solids (°Brix) in 

intact pineapple fruit were not transferable between summer and winter growing 

seasons. A combined calibration (data of three harvest dates) validated reasonably 

well against a population set drawn from all harvest dates (~ = 0.72, SEP = 1.84 

°Brix).  Calibrations for Brix in melon were transferable between two of the three 

varieties examined. However, a lack of robustness of calibration was indicated by 

poor validation within populations of fruit harvested at different times. Further work 

is planned to investigate the robustness of calibration across varieties, growing 

districts and seasons.

                                                 

7 This appendix has been published in: Proceedings of the 8th International Conference on Near 
Infrared Spectroscopy, Essen, Germany, (Editors AMC Davies) 1998, under the title: ‘Robustness of 
NIR calibrations for soluble solids in intact melon and pineapple’.  Authors were John Guthrie, Brett 
Wedding and Kerry Walsh. 
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INTRODUCTION  

Fruit of the pineapple accumulates soluble sugars and acids during fruit 

maturation, with little change in internal chemical composition occurring after harvest 

1
.  As with pineapple fruit, the mesocarp of melon fruit does not contain starch, and 

thus the sugar content of the edible flesh does not change following harvest2.  Soluble 

sugars represent the major component of the total soluble solids content (° Brix) in 

these fruit, and thus refractometry of flesh juice represents a reasonable measure of 

sugar content.   

For pineapple, fruit eating quality is related to Brix, acidity, pH, Brix/acid ratio 

and ester concentrations.1 The variable best correlated with eating quality was Brix 

(linear relationship, coefficient of determination, R2
 = 0.70). Fruit of less than 14° 

Brix was considered to be unacceptable for the fresh market1. 

For melon fruit, consumer acceptability is correlated with sugar content at 

harvest,2 although it has been noted that melon eating quality depends not only on 

sweetness, but on various volatile compounds3  However, while a high Brix alone 

does not adequately define melon eating quality,2,4 the absence of high Brix makes 

good quality very unlikely5.  Research has confirmed that flesh firmness and Brix are 

more useful indicators of rockmelon maturity and acceptability than titratable acidity 

or juice pH.6 Similarly, in a neural net analysis using three physical measurements of 

honeydew quality, only Brix had consistent links to fruit flavour and sweetness as 

rated by a consumer preference study7.  This link was of a linear form, allowing the 

use of regression techniques. In sensory panel work,2 overall preference for melon 

was strongly correlated (r = 0.97) with perceived sweetness of the fruit, although the 
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correlation (r) of panel sweetness preference with Brix was only 0.52°. However, 

descriptive panels alone may not predict consumer response very well7.   

In the USA, legal minimum soluble solids (SS) levels has been set for the 

marketing of netted muskmelon (9 and 11 ° Brix for US No. 1 and Fancy Grades, 

respectively),8 and similar standards exist for honeydew melons4.  Some melon types, 

such as netted muskmelon and cantaloupe, develop a visible maturity index, such as 

an abscission layer or exocarp colour change, after the fruit has reached maximum 

sugar concentration. Other melon types, such as honeydew type melons, have no such 

qualitative index, and thus immature fruit are likely to be harvested along with mature 

fruit2.   

We conclude that a non-invasive measure of fruit Brix would be useful in the 

assessment of both fruit maturity and eating quality. The Brix content of the fruit can 

be measured non-invasively by near infrared (NIR) spectroscopy, thus allowing the 

grading of individual fruit. Regression techniques are typically employed in such 

applications to correlate second derivative spectral data to fruit Brix content. NIR 

spectroscopy has been used to assess the Brix content of intact pineapple (e.g. R2 of 

0.75, SEC of 1.21 ° Brix9), sliced melon tissue and intact melon fruit (e.g. R2 of 0.94, 

SEC of 0.56% and R2 of 0.36, SEC of 1.67%, respectively)10.  The decrease in 

predictive ability with the intact fruit was ascribed to a lack of substances in the rind 

that were related to Brix in the edible portion. Subsequent work employing stronger 

light sources, improved detectors and multiple regression data processing has 

improved the calibration for melon11,12,13. 

However, these calibrations and those developed for other intact fruit (e.g. 

peach,14 kiwifruit15), involve only one cultivar, from one growing district and from 

one growing season.  To our knowledge, only one paper has been published on the 
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robustness of such calibrations.  Peiris et al.16 reported on the calibration of NIR 

spectra with the SS of (one cultivar of) peach collected over three years. Individual 

season calibrations were successful in predicting SS within that season, but not for 

other seasons, as indicated by higher SEP (to 1.52%) and lower r (to 0.48). In 

contrast, a calibration based on data from all three seasons was superior in predicting 

SS in any season (highest SEP, 1.06%; lowest r, 0.66). This improvement was 

attributed to the inclusion of a broader range of SS in the combined calibration data 

set. 

In the current study we attempt to describe the robustness of a calibration 

developed for pineapple flesh Brix9 across growing seasons, and a calibration 

developed for melon flesh Brix across varieties.  

MATERIALS AND METHODS 

Pineapple fruit [Ananas comosus (L.) Merrill cv. “Smooth Cayenne”] of the one 

cultivar and growing district (Yeppoon, Central Queensland) were collected during 

December 1995, August and September 1997. Melon fruit [Cucumis melo (L.) 

varieties “El Dorado”, “Eastern Star” and “Hammersley”], were collected over 

August and September, 1997 from the one growing district (Burdekin, North 

Queensland). Approximately 100 fruit were assessed per population (Table 1). 

A Linbrook–NIRSystems 6500 spectrophotometer (Silver Springs, MD, USA) 

equipped with a remote reflectance fibre optic probe was used to collect NIR 

reflectance spectra (400–2500 nm, predispersive configuration) from an area of 16 

cm2 of the surface of intact rockmelon and pineapple fruit9.  Two spectra were 

collected per fruit, from opposite sides of the equatorial region.  The part of the fruit 

that touched the ground during growth was avoided.  Spectral attributes were 
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correlated against juice Brix of the fruit flesh (60 mm diameter core taken to 

approximately 20 mm depth). Juice Brix was measured using an Erma (Tokyo, Japan) 

digital refractometer.   

Fruit were assigned to calibration and validation sets following ranking of the 

fruit by average (of the two measurements per fruit) analyte concentration.  Fruit of 

similar Brix content were paired and one fruit from each pair randomly allocated to 

the calibration set and the other to the validation set. Samples within each fruit were 

then treated as separate spectral sets. The combined variety / growing season 

calibration and validation sets were developed similarly with approximately equal 

numbers of each variety in a set.   

Data treatment followed that established in a previous study,9 using ISI software 

(version 3.0; Infrasoft International, PA, USA). Analysis involved stepwise multiple 

linear regression (MLR) of second derivative data from the 700 to 1100 nm region of 

the spectrum. Gap and smoothing of four data points, respectively, was undertaken 

(i.e. ISI math treatment of 2,4,4,1). Standard normal variance (SNV) and detrend was 

used as the option in scatter correction. 



 210

Table 1. Calibration population statistics and regression parameter for 
three melon varieties and three harvest dates of pineapple. 
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RESULTS 

Fruit Brix characteristics 

The Brix of melon flesh varied from 5.5 to 13.6°, with little difference between 

varieties (Table 1), although the variety “Eastern Star” tended to have a higher and 

narrower range of Brix (9.8–13.6°).  The Brix of pineapple flesh varied from 6.3 to 

21°, with summer (December) fruit having higher values than winter 

(August/September) fruit. Fruit below 10° and 14°Brix for melon and pineapple, 

respectively, are generally considered unacceptable for the fresh market. 

In pineapple fruit, skin and flesh Brix is related9.  However, for melon fruit, 

flesh Brix (8–28 mm) was poorly related to both skin (outside 2 mm) and green (c. 2–

8 mm) layers (Figure 1).   

Melon calibration 

For melon, reasonable calibrations were obtained for one population of the 

variety “El Dorado” (EDa) and for “Hammersley” (H) (coefficient of determination 

R2 = 0.82 and 0.70, standard error of calibration SEC = 0.63° and 0.84°Brix, 

respectively) (Table 1). A poor calibration was established for the variety “Eastern 

Star” (ES) and for a second population of “El Dorado” (EDb) (Table 1). A reasonable 

calibration was obtained using a combined calibration population of all varieties 

[EDa, ES and H (Figure 2)] or ED and H only (R2 = 0.73 and 0.81, SEC = 1.02° and 

0.86°Brix, respectively).  

Predictions of Brix in fruit of EDa and H populations validated well against 

calibrations developed from the fruit of their respective populations (r2 = 0.77 and 

0.61, SEP = 0.74° and 1.32°Brix, respectively) and also against each other (Table 2). 
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Indeed, the validation of the combined EDa and H calibration was similar to that of 

the variety specific calibrations of EDa and H (e.g. validation for H population, r2 = 

0.73, SEP = 1.15°Brix). In contrast, the calibrations derived for ES and for a second 

ED population (EDb) validated poorly against themselves, and other populations. The 

second population of ED (EDb) validated poorly against the Eda specific calibration 

(R2 = 0.12, SEP = 1.32° Brix), and also against all other calibrations. The calibration 

derived from the combined population set (EDa, ES and H) had decreased validation 

accuracy, as expected with the inclusion of the ES population (Table 2, Figure 2). 

 

Figure 2. Calibration (a) and prediction (b) relationships between NIR 
predicted and actual flesh Brix of melon fruit. Calibration (a) is of combined 
data set of three melon varieties (EDa, H and ES). Validation (b) is of calibration 
relationships shown in (a) tested against population sets of the three varieties 
(EDa, H and ES). 

Pineapple calibration 

Both summer fruit (December 1995) and winter pineapple fruit (August 1997 

and September 1997) supported reasonable calibrations (R2 = 0.65, 0.85, 0.72; SEC = 
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1.12 °, 1.27 °, 1.02° Brix, respectively) (Table 1). A combined calibration using 

independent samples from all populations also gave a good explanation of the 

population variance, although with a larger SEC than for the individual calibrations. 

 

 

Figure 1. Relationships of the Brix content between skin (outside 2 mm), 
green (2–5 mm) and flesh (8–20 mm depth) of rockmelon (Cucumis melo (L.) 
variety “El Dorado”).  

 
The winter fruit population harvested in August 1997 validated well against an 

independent set from the same population (r2 = 0.66, SEP = 1.94° Brix) (Table 2). In 

contrast, December 1995 fruit and September 1997 fruit validated poorly against 

independent sets of the same populations (r2 = 0.28 and 0.34, respectively). Despite 

this, the combined calibration achieved a r2 of 0.72 and a SEP of 1.84° Brix against 

an independent validation set drawn from all harvest dates (Table 2). 
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Discussion 

Using the NIRSystems 6500 remote reflectance system, spectral data are 

obtained from tissue within 5 mm of the fruit surface. 9 As melon skin Brix was not 

correlated to flesh Brix, the calibration of NIR spectra with melon flesh Brix must 

represent an indirect correlation with another constituent of the skin/green layers (e.g. 

it is possible that starch content of the rind is related to Brix content of the flesh).  It is 

reasonable to expect an improved accuracy of calibration if spectral information on 

the fruit flesh through the thick skin layers could be obtained.  The use of an optical 

arrangement (e.g. increased intensity of incident light, decreased detection of specular 

radiation) which allows collection of spectral information from a greater depth within 

the fruit is desirable in this respect10.  To be commercially useful in fruit grading, NIR 

spectroscopy must be capable of sorting fruit into at least two grades (i.e. above and 

below an acceptable Brix value) with approximately 80% accuracy. This requirement 

involves attainment of a validation correlation coefficient of at least 0.6517.  This 

criterium was generally obtained within populations. The exceptions (e.g. melon 

populations of Eastern Star and El Dorado b) were attributed to the nature of the skin 

of the fruit (irregular and thicker epidermal layers than other varieties used in this 

work), preventing collection of spectral information from internal tissues, or by a 

change in the chemical matrix of the fruit, resulting in spectral “interference”. 

Differences in epidermal thickness or chemical constituency is to be expected 

between varieties, and can be accommodated by developing variety specific 

calibrations within a grading system. However, the differences between the two 

populations of El Dorado melons, harvested within weeks of each other, and from the 

same farm, was not expected.  As expected,16 the application of these calibrations to 

populations involving other growing seasons (pineapples) or varieties (melons) was 
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not as successful (lower r2, higher SEP) as the use of calibrations developed across 

growing seasons or varieties, with the compromise of a decreased SEP in the 

combined calibration in prediction of its “own” population.  With pineapple, 

calibration equations were not transferable between the summer and winter fruit 

populations, however, a combined population was sufficiently robust to allow grading 

of fruit into two grades of sweetness. The application of NIR spectroscopy to the 

sorting of intact fruit on the basis of Brix value is thus dependent on the development 

of robust calibrations, developed with respect to variety, growing season (and possibly 

growing district). We anticipate that such calibrations will need continual updating for 

changes due to the time of harvest (within and between growing seasons), as practiced 

in the grains industry18, and updating or replacement with the introduction of new 

varieties. Further work is required to address the issue of the stability of the variety 

specific calibrations across growing districts, growing season and time of harvest 

within a season.   
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APPENDIX C 
DEVELOPMENT AND USE OF AN ‘AT-LINE’ NIR 
INSTRUMENT TO EVALUATE ROBUSTNESS OF 
MELON BRIX CALIBRATIONS8 

ABSTRACT 

Melon eating quality is largely dependent on soluble sugar content, which can 

be non-invasively assessed using near infrared spectroscopy.  Cost effective 

application of this technology to fruit sorting requires optimisation of (i) 

instrumentation, (ii) the optical interface between sample and detector, and  (iii) the 

calibration population and data treatment.  In terms of instrumentation requirements, a 

resolution of 20 nm and signal to noise (standard deviation) ratio of 4,600 was 

indicated to be adequate for a Si array spectrometer based system for the prediction of 

sucrose content.   An optical system using the Zeiss MMS1 photodiode array 

spectrometer was optimised in terms of optical geometry, with reference to fruit and 

lamp(s).  This system was used to collect spectra of a range of melon varieties, 

growing localities and growing times.  Calibration sets were trimmed on the basis of 

global and neighbourhood Mahalanobis distances.  For example, one calibration set 

containing 1991 spectra was reduced to 449 with use of a NH of 1.0, with no loss of 

prediction precision (SECV).  A calibration developed on a single population

                                                 

8This appendix has been published in: Proceedings of the 9th International Conference on Near Infrared 
Spectroscopy, Verona, Italy, (Editors AMC Davies and R Giangiacomo) 1999, under the title: 
‘Development and use of an ‘at-line’ NIR instrument to evaluate robustness of melon Brix 
calibrations’.  Authors were KB Walsh, CV Greensill and JA Guthrie.  
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(variety-time-location) gave poor predictions of populations of the same variety 

harvested at other times or locations.  A calibration developed over five time-locations 

of the one variety predicted sugar content of other populations of the same variety 

well, and populations of one of four other varieties.  A calibration developed over five 

varieties proved to be acceptably precise (SECV ca. 0.8 %TSS) and robust. 

Keywords 

Charged couple device, photo-diode array, fruit, non-invasive, sugar content 

INTRODUCTION 

Melon eating quality is indexed by total soluble solids (TSS)1,2.  Other attributes 

(e.g. volatiles, texture) contribute to eating quality, but TSS is often positively 

correlated with these attributes, and high TSS is a prerequisite for good eating 

quality1.  Therefore, the ability to grade every fruit for TSS (eating quality), as well as 

external appearance (shape, size, colour, etc) is desired.  As TSS can vary between 4 

and  16% w/v, and as 80% of TSS is simple sugars (predominately sucrose) 3, a 

method of measurement of sucrose within intact melons to a resolution of 

approximately 1% is required for a fruit eating quality assurance program.   

Near infrared spectroscopy (NIRS) was first applied in a reflectance mode to 

the measurement of TSS in melons by Dull et al. 3.  A correlation standard error of 

prediction (SEP) of 1.6% for sliced fruit, and 2.2% for intact fruit, was reported in this 

work.  Subsequent reports of the use of NIRS to assess the TSS of intact fruit show a 

progressive decrease in the SEP, from 2.2%4 and 1.9%3 to 0.4%5.  This improvement 

reflects change in the instrumentation used, and in the optical geometry (light-sample-

detector) employed.  Systems employing reflectance mode suffer from a background 

of specular light.  However, the optical density of melon fruit makes transmission 

mode difficult to employ.  Aoki et al. 5 employed a multiple lamp system, with lamps 
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mounted at 90o to the detector, with respect to the centre of the fruit.  NIRS 

technology is now in commercial use in Japan for melon sorting (e.g. Fantech, 

Mitsui), with a reported SEP of 0.5%. 

The studies mentioned above report the development of a calibration on one 

population of fruit only, and it is not clear if this calibration is variety-locality-season 

specific, or is robust across such variations.  In a previous study, we6 employed a 

NIRSystems 6500 reflectance mode spectrometer to consider the robustness of 

calibrations across melon varieties, growing seasons and growing locations.  A 

combined calibration was useful (ie. SEP below 1% TSS) across time-locality, and 

across several, but not all varieties. 

In the present study we document the selection and optimisation of a 

spectrometer system suitable, in terms of cost and speed, for the grading of fruit in an 

at-line setting, with a view to incorporating these results into an in-line setting, and 

report on the robustness of calibrations across varieties, time and locality.  

MATERIALS AND METHODS 

Cost effective application of this technology to fruit sorting requires 

optimisation of (i) instrumentation, (ii) the optical interface between sample and 

detector, and  (iii) the calibration population and data treatment. 

Detector attributes. 

An optical table based spectrometer was constructed using a Hammamatsu 

photodiode array, in order to consider the effect of wavelength resolution on 

calibration.  To change resolution, slit width of the system was altered, with a 

corresponding change in intensity of illumination of sample to maintain a constant 

amount of light reaching the detector.  The spectrum of a Hg-Ar lamp (Ocean Optics, 
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Dunedin, Florida) was used in the characterisation of resolution.  In a parallel 

experiment, the effect of detector signal to noise on calibration performance was 

considered.  In this exercise, the signal to noise of a Zeiss MMS1 spectrometer unit 

(Jena, Germany) was altered by changing signal strength or the number of spectra 

averaged. 

In both experiments, a bifurcated fibre optic interactance probe, consisting of 

eight 400 µm illuminating fibres concentrically arranged about a single 400 µm read 

fibre (Ocean Optics), was used in conjunction with a tungsten halogen lamp (Ocean 

Optics) to gather spectra of sucrose solution soaked cellulose filter papers (0-20% w/v 

sucrose) for calibration characterisation.   

Two low cost (<A$5,000), miniaturised spectrometers were chosen for 

comparison, based on the use of different detector technologies (charge coupled 

device and photodiode array in the Ocean Optics S2000 and Zeiss MMS1, 

respectively).  Spectra of sucrose soaked filter paper were collected using the two 

instruments. 

 Optimisation of an optical configuration for melon calibration.   

Melons were obtained from commercial farms (varieties Doubloon, Eastern 

Star, Hammersley, Highline, and Malibu), with spectral collection and juice extraction 

and TSS determination made on the same day, and not more than 5 days after harvest.  

A series of trials were undertaken in terms of calibration performance for a range of 

angles between the incident light on the fruit surface and the area of fruit detected by 

the spectrometer, with reference to the centre of the fruit.  The protocol of sampling 

for wet chemistry was also considered with respect to calibration performance.  Light 

distribution within a melon fruit was assessed by sequentially cutting the fruit on the 
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axis perpendicular to the lamp – fruit centre, and measuring light output over 1 cm2 

areas of the fruit surface using the MMS1. 

Calibration development and robustness. 

Calibrations were developed using WINISI software, using first derivative 

data (derivative calculated over four data points), without smoothing or scatter 

correction. Outlier spectra were removed from calibration population sets using the 

3.0 Global H criterion of WinISI software. 

RESULTS AND DISCUSSION 

Wavelength Resolution 

Wavelength resolution of the MMS1 and S2000 instruments is illustrated by 

the FWHM of the 912 nm peak of the Hg-Ar lamp spectra.  The MMS1 achieved a 13 

nm resolution, while the S2000 achieved a 2 nm resolution (Fig. 1).   Given that the 

second and third overtone bands assessed using NIRS are typically broad spectral 

features, ca. 50 nm, a resolution of less than 20 nm should not be necessary.  This 

view is reinforced by the spectral averaging option typically employed in 

chemometric procedures6.  However, a typical MPLS correlation developed on 

absorbance data has coefficients which can vary widely between spectral data points.  

This variability hints at a requirement for better resolution. 
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Figure 1. Spectra of a mercury argon lamp acquired with the Zeiss MMS1 
(dotted line) and the Ocean Optics S2000 (solid line) spectrometers.  Inset 
illustrates the resolution of the 912 nm peak by the two devices (with detector 
response normalised to output at this wavelength). 

 

Table 1. Calibration performance of (sucrose soaked cellulose) in terms of 
standard error of cross validation with respect to spectrometer wavelength 
resolution and signal to noise ratio.  Means followed by the same letter within the 
two experiments are not significantly different at a 95% confidence level. 

 

FWHM 
(912 nm) 

Maximum 
Count 

Spectra 
averaged 

S/N SECV 
(°Brix) 

7.7 30,300 1  1.04 a 
10.6 30,300 1  0.97 a 
13.8 30,300 1  0.93 a 
16.7 30,300 1  0.93 a 
20.0 30,300 1  0.98 a 
13.2 2,000 1 1,400 2.02 a 
13.2 8,000 1 4,600 1.29 b 
13.2 30,300 1 9,700 1.22 b 
13.2 30,300 2 15,900 1.29 b 
13.2 30,300 16 30,300 1.46 b 
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In practice, decreasing wavelength resolution (characterised at the 912 Hg-Ar 

line peak) to 20 nm did not significantly decrease the performance of a calibration of 

sugar solutions on cellulose (Table 1).  We conclude that spectral resolution below 20 

nm is not a priority characteristic for instrumentation in this application. 

Signal to Noise Ratio 

The signal to noise ratio of the MMS1 and S2000 instruments was 

characterised by collecting 200 spectra (raw A/D output, 12 bit A/D) of a teflon tile 

using the interactance probe and light source, and calculating a value for mean / 

standard error of measurement for every spectral data.  Light intensity was first 

adjusted to achieve a signal close to saturation for the two instruments.  The MMS1 

demonstrated a relative enhancement in the 750-950 nm spectral region, relative to the 

S2000 (Fig. 2A).  The signal to standard error ratio broadly paralleled the mean signal 

for both instruments, reflecting the importance of signal shot noise (square root of 

number of photons received per pixel).  However, the ratio of signal to standard error 

of signal of the MMS1 reached a maximum of 40,000, in contrast to only 1,000 for 

the S2000 (Fig. 2A).  This result was expected, insomuch as photodiodes deliver a 

higher signal to noise ratio than CCD’s at high signal levels. 

A similar exercise was undertaken at a low light level, held constant for the 

two instruments.  As expected for a CCD detector relative to a PDA detector, the 

recorded count from the S2000 unit was greater than that of the MMS1 detector, 

although only by a factor of two (Fig. 2B).  This result reflects the wider slit width, 

greater pixel size and lesser pixel dispersion of the Zeiss MMS1 unit.  The signal to 

standard error ratio of the MMS1 was again higher than that of the S2000 (achieving a 

maximum of 7,000 and 150, respectively; Fig. 2B).  This result is contrary to that 

expected on the basis of PDA and CCD detectors type, and presumably reflects 
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differences in electronics between the two systems.  Indeed, after initial powering up, 

detector output decreased slightly for the MMS1 (maximum at 750 nm, with 30 

counts decrease on a signal of 30,000, or 0.1% change), stabilizing after 1.5 h (data 

not shown).  However, the S2000 unit demonstrated greater fluctuations (ca. 1% 

change), with continuing fluctuation after 1.5 h (data not shown).  Frequent 

referencing would be required for the latter unit in a fruit sorting application. 
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Figure 2. Relative spectral sensitivity (lines) and signal to standard error 
ratio (circles) of spectra collected using the MMS1 (dashed line, solid circle) and 
S2000 (solid line, open circle) spectrometers.  Spectra were acquired using the 
same integration time (100 ms), light source, fibre optic guides and sample 
(reference material) for the two devices.  Mean signal and mean signal divided by 
standard error of measurement at each wavelength (n= 50) are displayed.  Note 
the scale change for the Zeiss MMS1 signal to noise ratio.  (A) Light intensity 
was adjusted such that the output of each detector was near saturation, and  
normalised to output at 720 nm.  (B) Spectra were acquired on both instruments 
at the same, relatively low, light intensity. 

 

Another source of signal noise is variation in lamp intensity or spectral output.  

After initial powering up, lamp output changed, with a decrease across most of the 

A 
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spectrum (maximum of 200 counts on a signal of 30,000, or 0.67%), but an increase 

around 833 nm.  Lamp output stabilised after ca. 1.5 h.  These changes are ascribed to 

changes in lamp chemistry during lamp ‘warm-up’.  For all other experiments 

reported in this study, instrument and lamp were allowed to stabilise for at least 2 h 

before use. 

The importance of signal to noise ratio on calibration was investigated by 

undertaking calibration of spectra with a range of signal to noise conditions, collected 

of cellulose soaked with a range of sucrose solutions.  Signal to noise ratio was varied 

by changing signal level by altering light level and number of scans averaged per 

spectrum.  The SECV of the resulting calibration was significantly affected only 

below a signal to standard deviation ratio of 4,600 (Table 1).  We conclude that a 

single scan, with a count level at 25% or greater of saturation, is adequate for the task 

of sucrose calibration (0-20% w/v on cellulose matrix) using the MMS1. 

On the basis of signal to noise ratio it is expected that the S2000 spectrometer 

would support a poorer calibration than the MMS1.  Indeed, the SECV of a 

calibration of cellulose soaked with a range of TSS solutions was three times higher 

when developed with the S2000, in contrast to the MMS1 (5.4 and 1.8, respectively).  

The MMS1 was therefore adopted for the fruit assessment work reported below.  

Optimisation of an Optical Configuration 

Light was diffusely scattered through the melon flesh (mesocarp), but assumed 

some directionality through the seed cavity of the fruit (Fig. 2).  The contact angle of 

the light beam with the fruit surface was essentially irrelevant because of diffuse 

scattering of light within the fruit, with the detected light level determined by the 

distance from illuminated area to detected area.  For convenience, however, lamp and 

detector were aligned with the centre of the fruit.  There is a compromise position 
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between long path-length of light within the fruit and a high signal.  A small angle 

between detector and lamp allows for a high signal (low noise) but gives a short 

pathlength in the fruit, with measurement of proportionally more non-edible parts of 

the fruit, i.e. ‘skin’.  A larger angle between detector and lamp provides a longer 

pathlength, representing more of the edible flesh of the fruit, but results in a low 

(noisy) signal.  However, full transmission mode (lamp-detector angle of 180 o) is 

undesirable on both counts (low signal, and measurement of seed cavity attributes as 

well as flesh attributes).  Reasonable signal levels (ie >25% of detector saturation with 

a 200 ms integration time) were measured at up to a 60o lamp-fruit-detector angle).  

With four lamps positioned at 90o increments around the fruit, and at an angle of 45o 

to the detector, a near saturation signal was achieved with an integration time of 200 

ms.  The choice of this angle was confirmed by the performance of calibrations 

developed of spectra collected at a range of lamp-fruit-detector calibrations (Table 2).  

 

 

 

 

 

 

 

Figure 3. Two-dimensional diagrammatic representation (10 mm squares) of 
light penetration through a rockmelon from an incident light spot (on right side 
of ‘fruit’).  Data presented as absorbance units, within the following grey scales: 
(lightest to darkest) 0, 0.61, 1.22, 1.83, 2.44, 3.05 absorbance units.   

Sampling and Soluble Sugar Content of Fruit 

Soluble sugar content was variable within the melon fruit, varying with 

longitudinal position within the fruit by ca. 4% TSS, with circumferential position by 
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ca. 1% TSS, and with depth (skin to seed cavity) by ca. 4% TSS.  This observation is 

consistent with the report of Peiris et al. 7.  Thus the four lamp configuration involves 

detection of light that has passed through volumes of fruit tissue which can be 

expected to vary in TSS.  A variety of sampling procedures were assessed in terms of 

calibration performance (data not shown).  The optimal method involved removal of 

0.5 mm cores at a point between the centre of each of the four illuminated areas and 

the detected area and trimming of skin and seed cavity material from these cores, 

before pressing to extract juice for the refractometer measurement. 

Calibration Development and Robustness 

A calibration developed on a single Doubloon population (n=200) failed to 

predict the TSS of other Doubloon populations, and of other varieties, as assessed by 

the standard error of cross validation (SECV) (Table 4).  To develop a robust 

calibration, a data set of five Doubloon populations, varying in time and locality of 

harvest, and an extension of this data set involving a further five populations of four 

other melon varieties were created.  Spectral ‘redundancy’ was reduced by assessing 

the influence of the Neighbourhood H criterion on SECV.  A Neighbourhood H of 1.0 

decreased the number of spectra from 1991 to 449 for the five Doubloon and five 

variety calibration sets, respectively (Table 3). 

The calibration developed across five Doubloon populations predicted another 

Doubloon population well, and predicted population of one other variety well (Table 

4).  However, the performance of this calibration on two further melon varieties was 

less convincing (Table 4).  The calibration developed across 10 populations of five 

varieties performed acceptably across all conditions.  These results indicate that a 

calibration can be relatively robust across varieties, growing region and time.   
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Table 2. Calibration performance (melon sugar content) with respect to the 
angle between the illuminated and detected areas of the fruit, with reference to 
the centre of the fruit.  Calibration population n=40, range 7.0-11.9, mean 
9.5o Brix. 

 

SECV SEC Lamp angle 
(°) 

R2 

(°Brix) 
20 0.19 1.11 0.97 
40 0.64 1.24 0.65 
60 0.82 0.84 0.43 
80 0.38 1.03 0.84 

 

Table 3. Effect of population size reduction using Neighbourhood ‘H’ (NH) 
criterion on calibration performance (melon sugar content). 

 

NH Population numbers SEP(C) 
(°Brix) 

0.2 1991 0.85 
0.4 1458 0.90 
0.6 984 0.82 
0.8 647 0.87 
1.0 449 0.69 
1.2 303 0.77 
1.4 232 0.84 
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Table 4. Performance of a calibration developed on (a) one population (200 
spectra) of fruit of variety Doubloon (DubA), (b) five populations (1000 spectra) 
of fruit of variety Doubloon (DubA-E) and (c) ten populations (2,000 spectra) of 
five varieties of melon (5var) on the prediction of melon sweetness.  Calibration 
groups for (b) and (c) were selected using a criterion of 1.0 NH.  Results marked 
with an * represent a SECV (population data included in the calibration set), 
while unmarked results represent a true standard error of prediction (SEP). 

 

SECV/SEP (°Brix) 
Validation group Calibration groups 

 DubA DubA-E 5 var. 
Doubloon A 0.53* 0.62* 0.72* 
Doubloon B 1.33 0.86* 0.93* 
Doubloon C 1.28 0.66* 0.75* 
Doubloon D 1.17 0.74* 0.79* 
Doubloon E 1.13 0.92* 1.03* 
Doubloon F 0.93 0.66 0.67 

Doubloon A-E 1.42 0.76* 0.75* 
Eastern star 1.13 1.11 0.84* 
Hammersley 1.13 0.92 1.03* 

Highline 0.93 1.16 0.70* 
Malibu 0.89 0.66 0.61* 
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APPENDIX D 

DETECTION OF INSECT DAMAGE IN INTACT 
SWEET CORN COBS USING NIR 
REFLECTANCE SPECTROSCOPY9 

ABSTRACT 

Discrimination of the defects of sweet corn cobs (poor grain tip fill, insect 

damage and presence of the heliothis grub) from clean cobs can be achieved non–

invasively by near infra-red spectroscopy.  The NIRSystems 6500 scanning 

spectrometer and the Zeiss MMSI miniature spectrometer (coupled with a high 

intensity quartz halogen lamp -100 watts) can achieve this discrimination.  However, 

in a practical packing shed operation the relatively rapid and inexpensive Zeiss MMSI 

spectrometer offers the most promise.   

INTRODUCTION  

Near infra-red reflectance spectroscopy (NIRS) is a non-destructive procedure 

that uses optical data rather than wet chemistry methods to analyse both liquid and 

solid products for chemical composition.  Near infra-red reflectance spectroscopy has 

been used for over twenty years to analyse grain products for protein, oil and moisture 

(Shenk and Westerhaus 1993).  The use of the technique however has been limited to 

low moisture materials, as water absorbs strongly in the near infra-red (NIR) region of 

the electromagnetic spectrum of radiation.  The advent of powerful personal 

computers, fibre optics, improved sensor technology and chemometric software 

                                                 

9 This appendix has been published in the Final Report for the project titled ‘Insect Management in 
Sweet Corn’ – VG97036 authored by Peter Deuter et al. (2002) and funded by Horticultural 
Australia Limited. 
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packages has allowed this technology to be applied to high moisture materials (such 

as fresh whole fruit) in an in-line situation, in the last decade.   

Near infra-red is a small part of the electromagnetic spectrum of radiation 

(700 – 2,500 nm).  At one end of this spectrum are the high energy waves such as x-

rays and gamma rays, while at the other end of the spectrum are the low energy waves 

such as micro waves and radio waves.  Near infra-red is between the visible and the 

infra-red regions of the spectrum.  The area of the electro-magnetic spectrum of 

interest is between 700 and 2500 nm and concerns the bending and stretching of 

electronic bonds (C-H, N-H and O-H).  These bonds are involved in most organic 

compounds, such as sugars, protein, lipids and water.  Near infra-red spectroscopy is a 

secondary method of measurement and so must be calibrated against a primary or 

reference method, such as a refractometer reading (°Brix).  Because of this 

requirement, the technique is only cost effective with large sample numbers.  The 

calibration may be established in either a quantitative (e.g. linear regression of Brix 

content) or qualitative (e.g. discrimination between groups) basis.  

Ridgway and Chambers (1996) and Chambers and Ridgway (1995) used NIR 

reflectance spectroscopy to detect external and internal insect (grain weevil) 

infestation of intact wheat kernels.  Large spectral differences were observed between 

non-infested kernels and kernels infested internally with Sitophilus granarius (L) 

(grain weevil) larvae or pupae, arising from both a changed chemical composition and 

physical structure.  Single non-infested and infested kernels were distinguished by 

their second derivative (d2) spectra.  For both external and internal infestation there 

was substantial evidence that insect protein and/or chitin and moisture were being 

detected.  Near infra-red spectroscopy should be useful as a rapid method of detection.  

Further work by Chambers and Ridgway (1998) with single wheat grain kernels 
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internally infested with pupal stages of the grain weevil showed the possibility of 

detecting such infestation by measuring just two NIR wavelengths (1202 and 1300 

nm).  These workers used the 1100-2500 nm region of the spectrum and discriminated 

infested from non-infested samples simply by the increased reflectance (decrease in 

absorbance) of infested kernels due to the increase in specular radiation from the 

internal cavities (as a result of insect feeding ) and from the insect itself.   

Near infra-red spectroscopy (NIRS) (700 to 2500 nm), concerns the bending and 

stretching of molecular bonds (C-H, N-H and O-H) involved in most organic 

compounds.  NIRS is a secondary method of measurement and must be calibrated 

against a primary or reference method, such as a refractometer for Brix. 

Ridgway and Chambers (1995, 1996) used NIR reflectance spectroscopy 

(second derivative absorbance) to detect external and internal insect Sitophilus 

granarius (L) (grain weevil) infestation of intact wheat kernels arising from changes 

in both chemical composition and physical structure.  Infested samples demonstrated 

increased reflectance (decrease in absorbance) due to the increase in specular 

radiation from the internal cavities (as a result of insect feeding).  There was 

substantial evidence that insect protein and/or chitin and moisture were being 

detected.  Further work by Chambers and Ridgway (1998) with single wheat grain 

kernels demonstrated detection of infested grains using just two NIR wavelengths 

(1202 and 1300 nm). 

In this study the potential of NIRS for the detection of grub damage, grub 

damage with grub present and poor grain tip fill in corn was assessed   
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MATERIALS AND METHODS 

Sweet corn cobs fruit were harvested from two locations in Queensland, namely 

the Lockyer Valley and the Burdekin irrigation areas.  Cobs were selected to include 

clean cobs, cobs with poor grain tip fill, cobs with grub damage and cobs with grubs 

present.  Sweet corn cobs were transported under dry ice (8-10° C on arrival) and 

assessed within three days of harvest.  Near infra-red spectra were collected from the 

cob tassel end (first 7 cm of tip) of individual cobs.  Spectra were collected from two 

commercially available research instruments, the NIRSystems 6500 (700 – 2500 nm, 

remote reflectance probe), and the Perten DA 7000 (700 – 1700 nm, interactance 

probe), and a purpose built unit based on the Zeiss MMS1 miniature spectrometer 

(700 – 1050 nm).  Various optical configurations were used to gather spectra from the 

sweet corn cobs (Figs. 1).  Integration time for spectral acquisition varied from 100 to 

160 milliseconds per cob (four scans per spectra), to maximise the signal to noise for 

the Zeiss unit.  Discriminant equations were developed using partial least squares 

regression analysis within the WinISI II (vers. 1.02a) chemometric package. 

Four experimental runs were undertaken over the season using various 

spectrophotometers and optical configurations (Table 1 and Fig. 1).  In run four, the 

tip (tassel) of the corn cob was halved longitudinally and presented to the instrument 

sheath uppermost.  In this experiment, spectra were acquired of 80 cobs (20 of each 

category), of which five were randomly selected from each of the four groups for 

validation of the discriminant equation (developed on the remaining set).  The spectral 

data was analysed using the discriminate function of the WinISI II vers. 1.02a 

chemometric software package (Table 2 and 3).  In the discriminant analysis, spectral 

data were pre-treated with regard to derivatives, smoothing and scatter correction.   
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RESULTS AND DISCUSSION  

According to Shenk and Westerhaus (1993), discriminant analysis is best 

undertaken with no scatter correction (particle size and scattering of light may assist 

in sample discrimination) and first derivative to eliminate base line error.  A 

mathematically pre-treatment of first derivative derived over four data points with no 

smoothing, was found to give the optimum results and subsequently used.   

The Perten DA 7000 spectrophotometer was unable to discriminate between 

groups although it operates with a high intensity tungsten halogen lamp (42 watt) and 

covers an area of the electromagnetic spectrum from 700-1700 nm, using both silicon 

(Si) and (InGaAs) photodiodes.  This unit was operated in the interactance mode (Fig. 

1(a)) and as such, the area viewed by the probe was relatively small (e.g. less than 

10% of the area viewed by the remote reflectance fibre optic probe of the NIRSystems 

6500).  The bifurcated fibre optic bundle carries incident light down the outside 

bundle and the reflected light from the sample back to the detectors through the centre 

fibres.  However, the high intensity light and interactance mode should have resulted 

in good light penetration of the sample.  The poor result cannot be explained except 

by the fact that the instrument was on loan for a short time period and was possibly 

not set up optimally with regard to integration time.  Possibly, the interactance mode 

was not the ideal configuration, or gathering information over a very small area of 

sample with the potential to miss the localised defect.   

The experimental run utilising the Zeiss MMSI spectrophotometer in a side and 

tip presentation of the sweet corn cobs (Table 1 and Fig. 1(b &c)), again showed an 

inability to discriminate between the various groups of sweet corn cobs (clean, 

damaged, poor grain tip fill and grub presence).  Both these optical configurations 

utilised the transmission mode.  Because of the difficulty in sealing the shroud 
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containing the fibre optic bundle (carrying transmitted light to the detector array), the 

poor result could be best explained by the intrusion of excessive specular radiation.  

Also most of the light reaching the detector would have arisen from the sheath with 

little useful information regarding the actual defect.   

The third experimental run utilised a high intensity quartz halogen car lamp 

(100 watt) with a parabolic reflector to deliver light to the object, operated in the 

transmission mode (Fig. 1e).  Again poor discrimination occurred and this could be 

attributed to the transmission mode reducing the proportion of the signal containing 

defect information reaching the detectors.  In the fourth experiment, discrimination 

was achieved using the same configuration but reduced sample thickness.   

In the fourth experimental run, good discrimination also was achieved (Table 2 

and 3, Fig.1 (d & f)) with the NIRSystems 6500.  In this run, the transmission mode 

was utilised but only half of the tip of the cob was viewed.  The slightly better results 

of the 6500 could be attributed to the operation of the remote reflectance fibre optic 

probe in a light proof box (no ambient light adding to the signal) and the general 

precision of the instrument compared to the photodiode array of the Zeiss.  

Discriminant analysis for the 6500 as reported in Table 2 and 3, was carried out on the 

full spectrum (700-2,300 nm).  However, separate analysis also was undertaken on 

700-1,100 nm (as with the Zeiss) and 1,100-2,300 nm areas of the spectrum.  These 

results demonstrated the region of 700-1100 nm gave better results than the 1,100-

2,300 nm region alone.   

In a plot of the first derivative data obtained form both the Zeiss and 6500 

instruments (experiment 4) the areas of the spectrum showing most divergence, 

occurred around 960 and 1,030 nm.  These areas could be attributed to water and 

protein, respectively. 
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Clean cobs were always distinguished (by both instruments) from damaged 

ones.  However, there was some confusion with poor tip fill cobs sometimes 

misdiagnosed as insect damaged.  Also, the discriminant equation could not always 

differentiate between damaged and damaged with grub.  With both the Zeiss and 6500 

(experiment 4), in distinguishing the groups and various combinations of the groups 

(Table 2 and 3) on no occasion was a defect cob (i.e. damaged, poor tip fill or grub 

present) included in the clean group. 

Table 1. Discriminant analysis of the spectral data obtained from the 
various instruments and configurations, using the chemometric package WinISI 
vers. 1.02a.  Inability to distinguish between groups occurred when < 20% 
correctly identified. 

 

Experiment Optical 

No. Date 

No. of 
spectra 

Instrument 
configuration 

Groups 
distinguished 

Interactance 1 18-09-98 198 Perten DA7000

(42 watt) 

No 

side –transmission 410 Zeiss MMSI 

(50 watt) 

No 

tip –transmission 

2 24-11-98 

410 Zeiss MMSI 
(50 watt) 

No 

Zeiss MMSI large lamp – 
transmission 

3 25-11-98 106 

(700-1100 nm) (100 watt) 

No 

6500 Reflectance 80 
(700-2300 nm) (75 watt) 

Yes 

Half cob tip – 
transmission 

4 25-02-99 

80 Zeiss MMSI 

(100 watt) 

Yes 
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Table 2. Discriminant analysis of sweet corn cobs into 4 groups using 
partial least squares regression (WinISI vers. 1.02a). 

 

Groups Instrument Diagnosis 
(out of 5) 

Correct (of 
diagnosed) 

Incorrect 
diagnosis 

6500 5 3 1D, 1G 1 Tip fill (T) 

Zeiss 5 4 1G 

6500 5 5  2 Clean (C) 

Zeiss 6 5 1T 

6500 5 3 2T 3 Damaged (D) 
Zeiss 3 2 1G 

6500 5 4 1D 4 Damaged + grub 
(G) Zeiss 6 3 3D 

 

The discrimination was undertaken on four groups of sweet corn cobs with 15 

samples in each calibration set and 5 samples in each validation set.  The number of 

samples from the validation set (Diagnosis column) correctly assessed is given under 

the heading ‘Correct out of diagnosis’ and the misdiagnosed in the final column. 
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Table 3. Discriminant analysis of sweet corn cobs into 2 groups, using 
partial least squares regression (WinISI II vers. 1.02a) analysis.  Data of Table 2 
(re-categorised). 

 

Groups Instrument No. 
calibration 

set 

No. 
validation 

set 
Diagnosis Correct Incorrect 

6500 30 5C,5D 10 10 (5C,5D)  1.  Clean vs 
Damaged 

Zeiss 30 5C,5D 10 10 (5C,5D)  

6500 30 5C,5G 10 10 (5C,5G)  2.  Clean vs 
Damaged with 
grub Zeiss 30 5C,5G 10 10 (5C,5G)  

6500 30 5C,5T 10 10 (5C,5T)  3.  Clean vs Tip 
Fill 

Zeiss 30 5C,5T 10 9 (4C,5T) 1 T 

6500 45 15TDG,5C 20 20 (15TDG,5C)  4.  Clean vs Tip 
fill, damaged, 
grub 

Zeiss 45 15TDG,5C 20 18 (15TDG,3C) 2 TDG 

6500 60 10DG,10CT 20 17 (10DG,7CT) 3 DG 5.  Tip Fill & 
Clean vs 
Damage & 
damage + grub 

Zeiss 60 10DG,10CT 20 19 (10DG,9CT) 1 DG 

6500 45 5C,10DG 15 15 (10DG,5C)  6.  Clean vs 
Damaged & 
Damaged + 
Grub 

Zeiss 45 5C,10DG 15 14 (11DG,4C) 1 DG 
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Figure 1. Schematics of optical configurations used in near infra-red 
spectroscopy of sweet corn groups. 

CONCLUSION 

Discrimination of the defects of sweet corn cobs (poor grain tip fill, insect 

damage and presence of the heliothis grub) from clean cobs can be achieved non–

invasively by near infra-red spectroscopy.  The NIRSystems 6500 scanning 

spectrometer and the Zeiss MMSI miniature spectrometer (coupled with a high 

intensity quartz halogen lamp -100 watt) can achieve this discrimination.  However, in 

a practical packing shed operation the relatively rapid and inexpensive Zeiss MMSI 

spectrometer offers the most promise.  Further work needs to be undertaken to 

improve the signal to noise ratio of the optical configurations.  This will involve 
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further experimenting with optical configurations, integration times for spectral 

acquisition and light intensities. 
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APPENDIX E 
ASSESSING AND ENHANCING NEAR INFRARED 
CALIBRATION ROBUSTNESS FOR SOLUBLE SOLIDS 
CONTENT IN MANDARIN FRUIT 10 

ABSTRACT 

Near infra-red (NIR) spectroscopy has been used for the non-invasive 

assessment of intact fruit for eating quality attributes such as total soluble solids (TSS) 

content.  However, little information is available in the literature with respect to the 

robustness of such calibration models validated against independent populations 

(however, see Peiris et al. 1998 and Guthrie et al. 1998).  Many studies report 

‘prediction’ statistics in which the calibration and prediction sets are subsets of the 

same population (e.g. a three year calibration validated against a set from the same 

population, Peiris et al. 1998; calibration and validation subsets of  the same initial 

population, Guthrie and Walsh 1997 and McGlone and Kawano 1998).  In this study, 

a calibration was developed across 84 melon fruit (R2 = 0.86° Brix, SECV = 0.38° 

Brix), which predicted well on fruit excluded from the calibration set but taken from 

the same population (n = 24, SEP = 0.38° Brix with 0.1° Brix bias), relative to an 

independent group (same variety and farm but different harvest date) 

                                                 

10 This appendix has been published in: Proceedings of the 10th International Conference on Near 
Infrared Spectroscopy, Kyonjgu, Korea, (Editors AMC Davies and RK Cho) 2001, under the title, 
‘Assessing and enhancing near infrared calibration robustness for soluble solids content in mandarin 
fruit’.  Authors were John A. Guthrie and Kerry B. Walsh. 
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(n = 24, SEP= 0.66° Brix with 0.1° Brix bias).  Prediction on a different variety, 

different growing district and time was worse (n = 24, SEP = 1.2° Brix with 0.9° Brix 

bias).   

Using an ‘in-line’ unit based on a silicon diode array spectrometer, as described 

in Walsh et al. (2000), we collected spectra from fruit populations covering different 

varieties, growing districts and time.  The calibration procedure was optimised in 

terms of spectral window, derivative function and scatter correction.  Performance of 

a calibration across new populations of fruit (different varieties, growing districts and 

harvest date) is reported.  Various calibration sample selection techniques (primarily 

based on Mahalanobis distances), were trialled to structure the calibration population 

to improve robustness of prediction on independent sets.  Optimisation of calibration 

population structure (using the ISI protocols of neighbourhood and global distances) 

resulted in the elimination of over 50% of the initial data set.  The use of the ISI Local 

Calibration routine was also investigated.   

Additional keywords: acidity, Brix, citrus, dry matter content, non-destructive, 

section dryness 

INTRODUCTION 

Near infrared (NIR) spectroscopy has been applied to the sorting of intact fruit 

with a high moisture content for constituents such as soluble solids content (SSC) in 

cantaloupe fruit,1 sugar content in intact peaches,2 sugar content, acidity and hardness 

of intact plum fruit3 and SCC of intact citrus (mandarin fruit).  Commercial 

application to pack-house fruit sorting lines commenced in Japan in the mid 1990s, 

for the sorting of sweetness, ripeness and acidity of citrus fruit, apples, pears and 
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peaches at three pieces per second per lane.4, 5  Commercial application within pack-

houses of Western countries is nascent.   

The application of NIR technology requires an appreciation of the distribution 

of the character of interest within the fruit and the absorption and scattering of light 

through the fruit, in order to design an appropriate optical configuration of light 

source, detector and fruit (for example References 6 and 7).  The robustness of the 

NIR calibration model must be assessed across populations of fruit differing in, for 

example, temperature, variety and growing district. Unfortunately, these parameters 

are not well reported in the literature, with many NIR studies reporting the use of a 

standard optical design for spectral acquisition and the use of a single harvest 

population, divided into a calibration set and a validation set. Few studies have 

explored the issue of validation across populations varying in the locality of harvest, 

the time of harvest with a given season, or across years.  A notable exception is that of 

Peiris et al.8 who reported calibration validation across three seasons for peaches.  A 

calibration developed in one year predicted poorly on other years, but a combined 

calibration performed well for validation groups drawn from those years. In the 

current study we report on issues related to calibration robustness for intact mandarin 

fruit assessed for SSC.   

MATERIALS AND METHODS 

Plant material and SSC analysis 

Imperial variety of mandarin were sourced from commercial orchards in 

Munduberra, Queensland.  Fruit were sourced from three separate farms on one day, 

from three separate harvests over a five-day period from one tree and from one 



 

 248

packhouse over three seasons. Fruit were halved, juiced and SSC determined by 

refractometry (Bellingham and Stanley RMF 320).   

Spectroscopy 

Spectra were collected using an NIR enhanced Zeiss MMS1 spectrometer and a 

tungsten halogen light in the optical configuration reported by Greensill and Walsh.7 

Spectra were collected from one side of each fruit, on the equator of the fruit, 

equidistant from pedicel and stylar ends. 

Chemometrics 

The software package WinISI (ver.1.04a) was used for all chemometric 

analysis. Calibration performance was assessed in terms of coefficient of 

determination (R2) standard error of prediction (SEP), variance ratio (1-VR), standard 

deviation ratio (SDR), slope and bias of the validation sets. Further, the criteria of 

Wortel et al.,9 based on the Taguchi concepts as used in process control, were applied 

to evaluate model robustness. This approach involved calculation of an average SEP 

and a signal to-noise statistic (s/n = 20 log10 [mean SEP / SD SEP]) for the 

performance of a given model across a range of validation sets.  
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Table 1. Calibration and validation statistics for a calibration on one 
population of mandarin SSC, used in prediction of three populations varying in 
(a) days of harvest, (b) location of harvest and (c) season of harvest. 

 

 

RESULTS AND DISCUSSION 

Calibration statistics and B coefficients 

Typical MPLS calibration statistics for intact mandarin SSC were: R2 0.87, 

SECV 0.35, using six principal components, on a population SD 0.85, n = 100 (Table 

1).  The MPLS B coefficients for the mandarin SSC calibrations contain negative 

weightings on second derivative spectra around 910 and 850 nm and positive 

weightings around 880 nm (data not shown). Absorbance at ca 910 nm is ascribed to a 

third overtone stretching of CH bonds (Golic and Walsh, this volume). Absorbance at 

880 nm may convey pathlength information. A calibration that does not contain 

spectroscopically ‘relevant’ information is likely to be over-fitted to the data and, 

thus, can be expected to perform poorly when applied to new validation populations.   
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Calibration validation 

A calibration developed from a single population of fruit (100 spectra) was 

applied to validation sets harvested on different days, different locations and different 

growing seasons (Table 1).  The cause of the decrease in performance of a calibration 

when applied to a ‘new’ group presumably reflects change in the physical (optical) 

properties or the chemical properties (acid, water content) of the fruit.  Temperature of 

the fruit was constant at scanning.  Calibration performance across harvest day and 

location was comparable, as indicated by the mean SEP and s/n statistic, while 

performance was dramatically degraded across seasons.  There was no clear trend for 

performance to degrade with increasing time (days) or distance/soil type (location, 

data not shown) of harvest relative to the calibration group. Performance was 

apparently degraded with increasing time (seasons).  The cause of the dramatic 

decrease in performance of a calibration when applied to a new season of fruit is not 

clear and could reflect changes in the instrument used as well as change in the sample 

(fruit).   

To improve calibration performance on a new validation set, a typical strategy 

involved addition of samples from the new set to the calibration group. The validation 

sets were divided into two equal groups. One group was retained as a validation set 

and the other group used for selection of samples for addition to the calibration set. 

Any validation sample with a GH > 3.0 (calculated on calibration set scores and 

loadings) was excluded from this process. Several approaches were used in the 

selection of samples from the validation group for addition to the calibration group, 

(1) random, (2) selection, on the basis of ascending GH (validation set ordered in 

ascending order of GH calculated on calibration set scores and loadings, and samples 

selected at equal GH intervals), (3) selection of the basis of spaced GH (calculated as 
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per 2) and (4) selection on the basis of NH (increasing NH values calculated on 

calibration set scores and loadings to select increasing numbers of validation set 

samples, using the ISI ‘Expand a Product File with New Spectra’ feature). The 

performance of a calibration developed in one growing season and applied to fruit of a 

subsequent season was improved in terms of SEP and bias as increasing numbers, up 

to ca 10, of ‘validation set’ samples were added to the calibration set, using any of the 

three selection approaches (Figure 1).  
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Figure 1. Prediction statistics for SSC of a mandarin validation population 
(different growing season to calibration population) using three treatments for 
sample selection from the new season group for addition to the calibration 
group. Open circle, random selection; open squares, central GH selection; closed 
squares, spaced GH selection; open triangle, NH selection.  

 
It is surprising that so few fruit were representative of any physical or chemical 

change in the validation, relative to the calibration, set. In practical terms, we 

recommend it is sufficient to add data of ca 15 fruit to a calibration to update it for use 

across growing seasons. 
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A Microsoft® Excel spreadsheet was developed to ‘automate’ the 
significance testing of RMSEP and bias, following the method 
reported by Fearn (1996).  The method tests the significance of 
the differences in standard deviation (RMSEP) and bias between 
two models based on the residuals for the reference and 
predicted values for each sample in the population.  For bias, the 
null hypothesis is that biases from both models are equal; for the 
standard deviation, the null hypothesis is that the ratio of 
standard deviations is unity. The user chooses the level of 
significance required (e.g. 1%, 5% or 10%) with a default 
confidence level of 5%.  

The method requires two sets of matching predicted values and 
a set of corresponding reference values (Fig. 1).  Thus at any 
one time only two models (e.g. 2nd derivative absorbance data 
with or without scatter correction) can be compared. 

Fig. 1. Data entry worksheet

A summary  report (Fig. 2) includes the mean, number of 
samples (N) and standard deviation (SD) for the reference 
(Actual) values, predictions (Pred1 and Pred2) and residuals (m1
and m2) from both calibration models and the difference in 
residuals (d).

Fig. 2.  Summary report worksheet

In this example, there was no significant difference between 
the bias values of the two predictions, but the RMSEP values 
were significantly different.

A disadvantage of the procedure is that only two calibrations 
can be compared at a time (similar to a t test).  We look 
forward to the development of the equivalent of an ANOVA 
test (to compare multiple calibrations simultaneously), ideally 
working with unequal sample numbers!  Any takers?

Disk copies of the spreadsheet are available.  Alternatively 
copies can be sourced from john.guthrie@dpi.qld.gov.au.  
References.
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APPENDIX F

11 

                                                 

11This appendix was presented at the 11th Australian Near Infra Red Spectroscopy Group 
Conference and Short Courses, Fremantle, WA, 18-21 April, 2004.  Authors were Guthrie J, Reid D, 
Walsh K and was titled ‘Optimising math treatments using significance testing’.  
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COMPARING TWO COMPETING CALIBRATIONS FOR 
A GIVEN DATA SET12 

 

                                                 

12 This article was published in the newsletter of the Council for Near Infrared Spectroscopy- The NIR 
Spectrum 2 (3) 7. 


